Fatemeh Fattahi-Naghani; Mahdi Ghobadinia; abdolrahman mohammadkhani; Mohamad reza Nori Emamzadeie
Abstract
Introduction: Change and decrease in atmospheric precipitation in recent years as well as increase in population and further demand for agriculture in the arid and semi-arid regions (such as Naghan) has led to a significant decrease in surface and groundwater resources. Therefore, achieving optimal utilization ...
Read More
Introduction: Change and decrease in atmospheric precipitation in recent years as well as increase in population and further demand for agriculture in the arid and semi-arid regions (such as Naghan) has led to a significant decrease in surface and groundwater resources. Therefore, achieving optimal utilization of water in agriculture, new irrigation systems has been considered to gain the most crop yield with less amount of water consumption. Also cultivated area can be expanded by these systems, containing lands with irregular topography, due to the high water distribution uniformity. Besides developing irrigation system, irrigation management is an important tool for increasing crop productivity. Researchers have shown that applying deficit irrigation (DI) under drip system, has led to improve the quality of grape yield, decrease water consumption and increase water efficiency. The aim of this study is to investigate the effect of irrigation system and water stress on water consumption, yield and physiological indices of grapes.
Materials and Methods: The study field was located in Naghan, Chaharmahal & Bakhtiari Province, Iran. Experiences were done during summer 2016, in a completely randomized block design, with four replications in a grapevine garden The treatments included: CTRL, Furrow irrigation as common method in the area (control), surface irrigation with 100% water requirement (SI100), surface irrigation with 60% water requirement(SI60), drip irrigation with 100% water requirement(DI100) and drip irrigation with 60% water requirement (DI100).At the beginning of the experiences, 20 vine trees were selected with average of 60 years old. The field was divided into blocks, and the treatments were applied, randomly. Then the blocks were set up for the surface and drip irrigation. As the next step, required water was collected in a reservoir to obtain constant and reliable amount of water. In the control treatment, irrigation schedule of the gardeners (custom of the region) were considered in which irrigation event was at the beginning of the season. Also, drip and surface irrigation treatments were according to the soil water deficit. At the end of the experiment, water use efficiency, product performance, RWC, number of cubes per cluster, the weight of the cube in the cluster, cluster length, the number of main branches of the cluster and also qualitative properties such as soluble solids (Brix), total acid and pH of grape juice were measured.
Results and Discussion: According to the results of qualitative traits, the amount of applied water significantly affected the grapes pH in the level of 5%. The lowest grapes pH was due to the control treatment and the highest to the surface irrigation 60%. Also, measuring total soluble solids (TSS) in grape indicated significant difference in 1% level which revealed that deficit and drip irrigation increased sugar in grapes and therefore quality of the crop. The results of quantitative traits showed the number of cubes in treatments had a significant difference at a probability level of 1%. Number of cubes in surface irrigation treatment 100% (SI100) had the highest value, while the quality of the crop was lower. The treatments differed significantly in weight of 100 cubes and the drip irrigation treatment 100% (DI100) did not have a significant difference with control treatment, while deficit irrigation resulted in reducing the crop weight. Relative water content of leaves (RWC) had the highest amount in the control treatment, while low water stress reduced this index. Wet and dry yields were highest in the control treatments (CTRL); while, the lowest amount was due to the low irrigation treatments of DI60 and SI60 with 19% and 34% reduction, respectively for the wet and dry yield. Drip irrigation with 100% water requirement (DI00) was not significantly different from the control treatment in most of the quality parameters, cluster and yield characteristics but had less water consumption and higher water use efficiency.
Conclusions: Regarding the conditions of the region and the reduction of water resources, an accurate and efficient plan for irrigation is needed. So, the common method of irrigating in the region was assessed, as well as new methods of applying drip system and deficit irrigation. The results of this study indicate that drip irrigation system with 100% water requirement has no significant difference with the conventional irrigation method in the region, on quality and quantity of the gape yield. However, applying the drip system reduced the water consumption by 40%, and increased efficiency. Hence, drip irrigation system is suggested to be replaced by the traditional system.
nargess keyvani; Mohammad hasan Salehi; jahangard mohammadi; Abdolrahman Mohammadkhani
Abstract
Introduction: Soils form from the interplay of five main factors namely parent material, time, climate, relief (topography) and organisms. Topography is one of the local factors that has direct and indirect effects on soil formation, physical and chemical properties of soils. To understand the mutual ...
Read More
Introduction: Soils form from the interplay of five main factors namely parent material, time, climate, relief (topography) and organisms. Topography is one of the local factors that has direct and indirect effects on soil formation, physical and chemical properties of soils. To understand the mutual relationship between topographic properties, soil properties and plant community (phytocoenosis), it is necessary to decide on the appropriate method for properly managing the soil resources. In addition to the soil properties, topography may affect the soil production indices as well. Soil production index and consequently its productivity will in turn affect the growth and fruiting. Insight about the pattern the spatial variability of soil properties can be used to manage the lands properly. This study was performed to investigate the spatial variability of soil properties regarding aspect and also the relationship of these changes with the quality and quantity of peach production in Saman region in Chaharmahal-Va-Bakhtiari province, Iran.
Materials and Methods: The study area contained 1.5 hectare of 200-hectare peach gerdens belong to BaghGostaran Company located in Saman, Chaharmahal-Va-Bakhtiari Province. The soil moisture and temperature regimes are xeric and mesic, respectively. 136 soil samples were collected from 0-30 and 30-60 cm depths. Two peach trees around the soil samples were also selected. Then, soil physical and chemical properties including soil texture, percentage of calcium carbonate equivalent, organic carbon, plant available potassium, phosphorous, iron and zinc, pH and electrical conductivity were determined and fruit properties including branch length and diameter in the current year, number of fruits, total yield, average of fruit weight, TSS, tissue strength, pH, acid and extract percentage were measured. Finally, the dataset were analyzed using Statistica 6.0 software. Analysis of spatial data was calculated via variogram and performed using Variowin, 2.2 software package. After determination of the best model, kriging maps of the soil and fruit properties were prepared by Surfer 8 software.
Results and Discussion: The statistical results revealed that among the soil properties, pH of the surface and subsurface horizons in both aspects had the lowest CV. Plant available phosphorous and iron showed the highest CV at surface and subsurface horizons of eastern aspect, respectively. Among the soil variables, plant available iron showed the highest CV for both horizons at western aspect. Regarding peach properties, the tissue strength showed the highest and pH showed the lowest variation in both slopes, respectively. The results of mean comparisons revealed that the soil of eastern slope has more clay percentage, silt, organic carbon, plant available potassium, phosphorous, and iron in comparison with western aspect. Peach yield was higher in eastern aspect than the western one. Correlation coefficient among soil and peach propertied did not show a similar trend for two aspects. Amount of clay and plant available potassium in subsurface horizon showed a positive significant correlation with yield in western and eastern aspects, respectivelty. Variography showed that all variables except pH of subsurface horizon have spatial structure. The pattern of spatial variability of the yield and the number of fruits was also approximately the same as that of clay particles and organic carbon, plant available potassium, phosphorous and iron in both depths. The spatial variability of the branch length and diameter in the current year was similar to the spatial variability of clay particles percentage and the plant available potassium. The results suggested the significant effect of soil properties, especially clay particles percentage and the plant available potassium on the performance and vegetative properties of peach. However, the peach qualitative properties showed no significant correlation with the soil properties.
Conclusion: The results suggest that the significant effect of aspect on the soil and fruit properties. It seems that the aspect caused the formation of soil with different properties. Significant differences observed among some soil properties including texture components, the amount of organic carbon and nutrients in both aspects. The trees on the eastern slope had higher yield due to having more organic carbon and nutrients and consequently higher soil quality, while the trees on the western slope had fruits with higher quality which may be due to the climatic factors such as receiving more light, or other soil properties like the mount of available nitrogen. More investigation is needed to understand the effect of NPK and iron fertilizers and climate properties on peach properties in the orchards of the area. The effect of climatic factors on the peach qualitative and quantitative characteristics should be investigated as well.
Mina Kiyani; Mohammad hasan Salehi; jahangard mohammadi; Abdolrahman Mohammadkhani
Abstract
Introduction: The spatial variability of soil properties and its importance in production is a matter-of-debate. Insight about the variability of soil properties as well as the yield of orchards is necessary to achieve higher productivity and better management. Orange is one of the most important export ...
Read More
Introduction: The spatial variability of soil properties and its importance in production is a matter-of-debate. Insight about the variability of soil properties as well as the yield of orchards is necessary to achieve higher productivity and better management. Orange is one of the most important export products in our country and to sustainable production of this product, it is necessary to identify the factors affecting its growth. This study was performed to examine the statistical and geo-statistical relationship of some soil properties with the quantitative, qualitative and vegetative properties of Valencia orange in Kazerun area, Fars province.
Materials and methods: The study area contained 1 hectare (Valencia orange crop) of 205-hectare orchards of Rashnabad on the west of Kazerun, Fars province which is 860 meters above the sea level. 120 soil samples were collected from two depths of 0-40 cm and 40-80 cm (according to the root distribution) in order to investigate the statistical and geo-statistical relationship of some soil properties with the properties of Valencia orange. The sampling in the shade and with a minimum distance of one meter from the trunk of the tested tree was performed (It should be noted that orange trees have been planted as row planting with a distance of 5 meters from each other). In addition to the soil samples were collected for statistical studies from the depths 0-40 and 40-80 cm, the combined sampling of two trees that had less distance to the selected points was performed to measure the performance and quality of orange. It should be noted that all the Valencia trees, their age (about eight years) and management approach were similar. Soil samples were then transferred to the laboratory and air dried, the separately packed and passed through 2 mm sieve.Then, different soil and orange properties including soil texture, pH, EC, %OM, %CaCO3, solution potassium and available phosphorous, iron, zinc and manganese, branch length and branch diameter, trunk perimeter, trunk diameter and tree height, total soluble solids, acid percentage, Vitamin C, number of fruits,orange yield,average fruit weight and average fruit size were determined and the data set were analyzed using Statistica 6.0 software.Variograms of the data were drawn using variowin 2.2 and after determining the best fitted model, kriging maps of soil and fruit were prepared using Surfer9 software.
Results and Discussion: The results of correlation coefficient showed the significant and positive relationship between organic matter and available manganese of topsoil with total yield and number of fruits. According to the results of fitness of standard models to the empirical exponent change, all the properties had spatial structure. Soil properties including the percentage of clay, the percentage of organic matter, soluble potassium, phosphorous, available zinc and manganese in both depths in the eastern and south-eastern direction of the study area were higher than that of the others. These maps had the same spatial distribution pattern in terms of orange properties including the diameter and length of the current year branch, performance, number of fruits, average fruit size, acid percentage and total soluble solids.
Conclusion: The variability coefficient of soil and fruit properties did not show a consistent trend in the study. According to the correlation coefficients, in a few cases, a positive significance correlation was observed as an example, it can be referred to the positive significant correlation of orange yield with the organic matter and manganese in the depth of 0-40 cm. All the studied variables have spatial structure. Among the studied variables, the percentage of organic matter, clay particles percentage, soluble potassium, phosphorous, and available manganese in both depths showed the same spatial distribution pattern as that of the vegetative, qualitative and yield properties of orange including the total performance, fruit number, fruit size, the diameter and length of the current year branch. The proximity of the ranges of soil and fruit properties supports this result and is in line with the results of correlation coefficient. The results also showed that the spatial distribution and pattern of soil and crop variables may be different in a short distance with the same management. The study of the effect of NPK fertilizers on vegetative, qualitative and quantitative properties of orange in the region orchards is recommended. It is also suggested to study the effect of climatic factors on the orange qualitative properties.
M.R. Nori Emamzadeie; A. Rahmati; B. Ghorbani; A.R. Mohammadkhani
Abstract
Abstract
Aeration is conducted on the perennial grasses such as lawns to reduce soil compaction and enhances the growth as well as improves soil infiltration. In order to evaluate the effects of aeration and topdressing on water infiltration phenomenon in a perennial lawn a factorial experiment in a ...
Read More
Abstract
Aeration is conducted on the perennial grasses such as lawns to reduce soil compaction and enhances the growth as well as improves soil infiltration. In order to evaluate the effects of aeration and topdressing on water infiltration phenomenon in a perennial lawn a factorial experiment in a completely randomized design was conducted in the city of Isfahan in June 2009. Aeration, as the main experimental factor, consists of three levels, A0 (without aeration), A1 and A2 (with punching 1 cm diameter holes on the surface in a regular grid pattern and dimensions of 5×5 and 10×5 cm, respectively) and mulching, as the second experiment factor, consists of two levels, T0 and T1 (with and without any cover), were used for this purpose. To find the effects of the treatments on infiltration phenomena, infiltration was measured using Double Ring Method at three periodic times, i.e., 10, 70 and 130 days and data were analyzed ultimately using SAS software. The drawn results showed that applying A2T1 treatment, compared with A0T0 treatment as a control, increased cumulative infiltration by 286 percent and improved the final infiltration rate from 0.4 to 1 cm/h. On the other hand, A1T1 and A2T1 treatments application had no significant effect on the infiltration, but the effects of both treatments were significantly different from control, A0T0. On this basis, applying A2T1 treatment compared with A1T1 is technically and economically preferred, because of low Ip index. On overall, aeration improves soil permeability and its effects last by topdressing materials. By the way, aeration without topdressing is recommended for the lawn in flood prone areas.
Keywords: Aeration, Basic Infiltration Rate, Cumulative Infiltration, Loliumgrass, Topdressing