H. Neisi; A. Khademalrasoul; H. Amerikhah
Abstract
Introduction: Soil erosion is one of the most important forms of soil degradation which topographical characteristics are effective on its occurrence and spatial distribution. Actually, soil erosion is one form of soil degradation that includes on-site and off-site effects and the off-site effect is ...
Read More
Introduction: Soil erosion is one of the most important forms of soil degradation which topographical characteristics are effective on its occurrence and spatial distribution. Actually, soil erosion is one form of soil degradation that includes on-site and off-site effects and the off-site effect is deposition and sedimentation. In recent decades, the potential of soil erosion has been recognized as a serious threat against soil sustainability. Topographical attributes such as slope gradient (S) and slope length (L) are considered as the most important land surface properties which control energy fluxes, overland and intra-soil transport of water and sediment, and vegetation cover distribution within a landscape. The L and S are two main factors in the USLE equation which are meaningfully effective on soil erosion. The development of modern techniques such as geomorphometry has made it possible to quantify these attributes in GIS environments. Geomorphometry or terrain analysis is a computer technology-based science in which morphometric and hydrological attributes are calculated by a series of mathematical algorithms from a digital elevation model (DEM). WaTEM/SEDEM is water and tillage erosion model/sedimentation which is possible to estimate water erosion and also different forms of sediments in the watershed and hydrographical network. The accuracy of DEM in this model is really important and effective on the quality of model outputs.
Material and Methods: Landscape planning tools might help simplify the complexity of soil erosional processes. Furthermore, using predictive tools open up for the possibilities to investigate the effectiveness of different management scenarios on soil erosional responses to make a decision for improving soil properties by application of BMPs. Soil erosion modelling as a landscape planning tool is an efficient way to investigate the on-site and off-site effects of erosion. At the same time this tool opens up for an opportunity to perform scenario analysis with the respect to the placement of structural BMPs such as buffer zones. The soil erosion model WaTEM has been used as a landscape planning tool. WaTEM is a spatially distributed empirical model to simulate both erosion and deposition by water explicitly in a two dimensional landscape. This soil erosion model has been used as a landscape planning tool. The Universal Soil Loss Equation (USLE) has been developed to predict sheet and rill erosion. Desmet and Govers (1996) showed that using the 2D-calculation of the LS-factor in WaTEM made it possible to predict rill, interrill, and ephemeral gully erosions. In this study the spatial distribution of soil erosion and deposition affected by different LS-factors were investigated using WaTEM/SEDEM model that including rainfall erosivity (R-factor), soil erodibility (K-factor), topography (LS-factor), crop cover (C-factor) and management (P-factor) as GIS layers (.rst format) in Zoji watershed located in Shush (Khuzestan province). The WaTEM/SEDEM includs three main input parts, the first part consist of DEM, parcel map and stream network. The second part is CP factor and the third part consist of LS algorithms. The variations of LS algorithms are a milestone of this model and provide the possibility to define different LS situations in the watershed. In order to evaluate the effectiveness of LS algorithms, in the simulation process Govers, McCool, Nearing and Wishmeier-Smith algorithms were defined for WaTEM/SEDEM model.
Results and Discussion: Results of correlation (R=0.78) showed that topography had the highest effect on soil erosion distribution. Also our results illustrated that the amount of deposition in forms of total sediment production (TSP), total sediment deposition (TSD) and total sediment export (TSE) between different LS algorithms were disparate. Based on prediction of rill and interrill erosion, Nearing algorithm was the best LS algorithm and Govers algorithm was convenient in order to monitor and evaluate gully erosion. This study results showed that Govers algorithm estimated the highest amount of TSP because the Govers algorithm basically estimate the sheet, rill, interrill and gully erosion, therefore the amount of sediment in this algorithms is the highest one. For Govers algorithm the estimated TRE was the highest because the Gully erosion also was in the calculations and mostly the volume discharge originated from Gully was significantly higher than sheet and rill erosion. Therefore, regarding the types of prevailing erosion in each case the type of selected LS algorithm to simulate soil erosion and deposition distribution should be different.
Conclusion: In general, WaTEM/SEDEM and its LS algorithms is a suitable tool to select and apply best management practices (BMPs) to control soil erosion at critical areas and hotspots. Our results confirmed that regarding the selection of each LS algorithm, the amount of sediment components and their distribution could be different.
H. Lohrasbi; A. Farrokhian Firuzi
Abstract
Introduction: Wind erosion is one of the most important environmental challenges in arid and semiarid regions which cause soil loss and dust storm. In recent decades, the potential of soil erosion has been recognized as serious threat against soil sustainability. In addition, accelerated soil erosion ...
Read More
Introduction: Wind erosion is one of the most important environmental challenges in arid and semiarid regions which cause soil loss and dust storm. In recent decades, the potential of soil erosion has been recognized as serious threat against soil sustainability. In addition, accelerated soil erosion has led to harmful environmental effects. Therefore, focus on soil erosion outcomes is necessary in order to mitigate its environmental impacts. Understanding interactions between land use management and topographical properties of landscape are important in order to effectively control soil erosion through implementing best management practices (BMPs). Application of mulch is one of the most prevailing scenarios to prevent the erosive soil against wind as an erosive factor in the hotspots. In this regard the type of much is really important because the environmental aspects and the mulch consistency are important factors for production and selection of mulch between several options. Nowadays, sustainable management is one of the most important scopes in order to achieve the aims of human healthy. In this regards the Bagasse of sugarcane and Conocarpus were selected as feedstocks to produce biochars. Biochar is the by-product of anaerobic process which called pyrolysis. The biogases, energy and so on are other outputs of pyrolysis. Another treatment which evaluated in this study was Zeoplant. Zeoplant is a super absorptive material which is able to hold the water in the soil therefore is capable to enhance the water holding capacity of the soil.
Materials and Methods: In this study the effects of biochar of Bagasse from sugarcane, biochar of Conocarpus and Zeoplant in three levels (0, 2 and 4 percentage) and two moisture levels (25 and 50 percentage of FC) and 3 replications in randomized completely design with factorial on physical and mechanical properties of soil as indices of soil erodibility was studied. Soil sampling accomplished from Horalazim marshes and after application of treatment, incubated in tray with the size of 70×30×10 cm for 90 days. After incubations the trays located in wind tunnel in order to simulate wind erosion process under a wind with 15 m/sec speed and 2 m from soil surface. The main measured soil physical and mechanical parameters include mean weight diameter (MWD), penetration resistance (PR), tensile strength (TS), friability index (FI), shear strength, crusting index (CI), soil textural index and organic matter. The statistical analysis was performed using SAS 9.2 software and the mean comparison was accomplished with Duncan test (5 %). In order to draw the graphs Origin 2017 software was used.
Results and Discussion: The soil texture was silty loam (SiL) including 62% silt, 26% clay and 12% sand, therefore the soil was sensitive to wind erosion. Soil organic matter before application of biochars and Zeoplant was around 1.93% and after application increased to 3.78%. Application of these treatments and the period of incubation, enhanced the soil porosity. Generally increasing soil organic matter and soil porosity and decreasing of bulk density are the main factors to increase the soil aggregation. Our results showed that all three treatments in two moisture levels significantly increased soil porosity, tensile strength and field capacity and decrease soil crusting index (P<0.01). Biochar of bagasse and Zeoplant (2%) also significantly increased shear strength whereas biochar of Conocarpus has no significant effect on shear strength. Overall the applied treatments with armoring effect (AE) and increase the soil aggregate stability, diminished the wind erosion.
Conclusion: Our study illustrated that application of biochar is able to improve soil physical and mechanical properties. The main aspect of this positive effect is the specific characteristics and the structure of biochar which showed with SEM (Scanning electronic microscope) images. Moreover, Zeoplant is organic-inorganic treatment and including high potential to absorb the water in the soil. Indeed, the mulching is an effective management strategy to maintain and preserve the soil against wind (as erosive agent) however afterwards a vegetation cover must be grow on the surface. Therefore some treatments such as Zeoplant are essential to hold the water in the soils of arid and semiarid regions because in those areas the water scarcity is one of the main challenges. Based on our results and evaluation of these treatments we found two main processes which are effective to mitigate wind erosion. The first is aggregation process because of organic carbon and organic matter in the soil and the binding between organic and inorganic components. The second one is an armoring effect which is originating from amendments especially biochar lumps on the surface. Finally our results confirmed the application of evaluated treatments to preserve the erosive soil against wind.