Agricultural Meteorology
S. Mirshekari; F. Yaghoubi; S.A. Hashemi
Abstract
Introduction
The 21st century is witnessing the increase of climate change as an important challenge due to its destructive environmental and socio-economic effects. Extreme climatic conditions have become frequent and more intense in recent decades as a result of human activities. Iran, as one of the ...
Read More
Introduction
The 21st century is witnessing the increase of climate change as an important challenge due to its destructive environmental and socio-economic effects. Extreme climatic conditions have become frequent and more intense in recent decades as a result of human activities. Iran, as one of the countries in the Middle East with a different climate in each region of the country, has suffered significant adverse effects of climate change. Considering the importance of the climate change, it is important to investigate the changes in climate variables to know the future conditions and make management decisions. In the field of climate research, global climate models are useful tools that are often used to investigate the global climate system, including historical and projected periods. Since the use of the CMIP6 dataset provides improved clarity and accuracy for predicting future climate forecasts, the main objective of the present study is to predict the temperature and precipitation changes in the near, mid, and far future in Sistan-va-Baluchestan province.
Materials and Methods
The minimum temperature, maximum temperature, and precipitation data of 10 general circulation models (GCMs) of the 6th IPCC report for the baseline (1990-2014) were downloaded from the Global Climate Research Program database (https://esgf-node.llnl.gov). Then GCMs were including ACCESS-CM2, CMCC-ESM2, CNRM-CM6-1-HR, CNRM-ESM2-1, EC-Earth3-CC, EC-Earth3-Veg-LR, INM-CM4-8, INM-CM5-0, MIROC6, and NorESM2-MM. Four statistical indicators including correlation coefficient (R2), RMSE, Nash-Sutcliffe efficiency (NSE), and mean absolute error (MAE) were used to evaluate the performance of 10 GCMs. Based on the results obtained from the these indicators, the models that had higher performance in predicting the temperature and precipitation data were selected as the best models for forecasting in the future. The ensemble of these models under two SSP2-4.5 and SSP5-8.5 scenarios for the near, middle, and far future (2026-2050, 2051-2075, and 2076-2100) were extracted from the World Climate Research Program database.
CMhyd (Climate Model data for hydrologic modeling) tool was used to bias correction climate data of the selected models. In order to choose the best bias correction method, the R2, RMSE, NSE, and MAE were estimated.
After bias correction, the climate data of selected models were ensembled and then the changes in precipitation and maximum and minimum temperature in three future periods compared to the baseline was estimated.
Results and Discussion
The results showed that out of 10 GCMs, seven models had good performance (R2 > 0.40, 4.23 < RMSE < 12.02°C, 0.12 < NSE < 0.74, and 3.36 < MAE < 9.59°C) in simulating daily minimum and maximum temperature. However, the performance of all models in simulated daily precipitation was poor (R2 > 0.19, 1.24 < RMSE < 3.70 mm, -7.41 < NSE < -0.57, and 0.23 < MAE < 0.85 mm).
Among the different bias correction methods of temperature and precipitation available in CMhyd, the distribution mapping method had the best performance.
In all three regions, compared to the baseline, the average annual minimum and maximum temperature under two scenarios will increase in the future periods and precipitation will decrease in most periods and scenarios. These changes will be mainly in the SSP5-8.5 scenario compared to SSP2-4.5 and also in the far future period compared to the middle and near future. Averaged across all locations, annual maximum temperature showed increases in near, middle, and far projected periods of 1.3, 2.1, and 2.8°C under SSP2-4.5 and 1.6, 3.1, and 5.1°C under SSP5-8.5, respectively (Fig. 2), while for minimum temperature, the increases will be of 1.6, 2.6, and 3.4°C for SSP2-4.5 and 1.9, 3.9, and 6.3°C for SSP5-8.5. The range of annual precipitation among all sites was from –58.22 to 49.33% under SSP5-8.5 in the near and far future periods in Zabol and Iranshahr, respectively.
The annual increase in the average maximum and minimum temperature will be mainly due to the increase in air temperature in the months of January, February, August, September, October, November and December. The annual decrease in precipitation will mainly result from the decrease in precipitation in January, February, March, November, and December, and the annual increase in precipitation will result from the significant increase in precipitation in May and October compared to the baseline.
Conclusion
The results showed that under different scenarios of climate change, the maximum and minimum temperatures in the near, middle, and far future periods will face an increase compared to the baseline. However, the precipitation changes in the future time periods are not the same as compared to the baseline, and in some periods the precipitation will decrease and in others it will increase. But in general, the decrease in precipitation will be more than its increase. Therefore, it is very important to formulate and implement appropriate management programs for the needs of each region, in order to properly manage water resources and adapt to extreme temperatures and their consequences.
fatemeh yaghoubi; Mohammad Bannayan Aval; Ghorban Ali Asadi
Abstract
Introduction: Estimating crop water requirement, crop yield and their temporal and spatial variability using crop simulation models are essential for analysis of food security, assessing impact of current and future climates on crop yield and yield gap analysis, however it requires long-term historical ...
Read More
Introduction: Estimating crop water requirement, crop yield and their temporal and spatial variability using crop simulation models are essential for analysis of food security, assessing impact of current and future climates on crop yield and yield gap analysis, however it requires long-term historical daily weather data to obtain robust predictions. Depending on the degree of weather variability among years, at least 10–20 years of daily weather data are necessary for reliable estimates of crop yield and its inter-annual variability. In many regions where crops are grown, daily weather data of sufficient quality and duration are not available. In this way, gridded weather databases with complete terrestrial coverage are available which require comprehensive validation before any application. These weather databases typically derived from global circulation computer models, interpolated weather station data or remotely sensed surface data from satellites. The aims of this study were to evaluate differences between grided AgMERRA weather data and ground observed data and quantify the impact of such differences on simulated water requirement and yield of rainfed wheat at 9 different locations in Khorasan Razavi province.
Materials and Methods: AgMERRA dataset (NASA’s Modern-Era Retrospective analysis for Research and Applications) was selected as the girded weather data source for use in this study because it is publically accessible. We evaluated AgMERRA weather data against observed weather data (OWD) from 9 meteorological stations (Torbat Jam, Torbat Heydarieh, Sabzevar, Sarakhs, Ghoochan, Kashmar, Gonabad, Mashhad, and Neyshabour) in Khorasan Razavi province. For each weather variable (solar radiation, maximum temperature, minimum temperature, precipitation, and wind speed), the degree of correlation and agreement between OWD and AgMERRA data for the grid cell in which weather stations were located were evaluated. The intercept (b), slope (m), and coefficient of determination (r2) of the linear regression were calculated to determine the strength and bias of the relationship, while the root mean square error (RMSE) and normalized root mean square error (NRMSE) were computed to measure the degree of agreement between data sources. Crop water requirement or actual crop evapotranspiration (ETc) under standard condition was computed using CROPWAT 8.0. The CSM-CERES-Wheat (Cropping System Model-Crop Environment Resource Synthesis-Wheat) model, included in the Decision Support System for Agrotechnology Transfer (DSSAT v4.6) software package was used to calculate rainfed wheat yield. For each location in this study, rainfed wheat grain yield and water requirement were simulated using ground-observed and AgMERRA weather data and outputs were compared with each other.
Results and Discussion: The results of this study showed that AgMERRA daily maximum and minimum temperature and solar radiation showed strong correlation and good agreement with data from ground weather stations. AgMERRA daily precipitation had low correlation and good agreement (mean r2= 0.34, RMSE= 2.25 mm and NRMSE= 4.94% across the 9 locations) with OWD daily values, but correlation with 15-day precipitation totals were much better (mean r2 >0.7 across the 9 locations). There was reasonable agreement between a number of observed dry and wet days with AgMERRA compared to OWD. Results indicated that coefficient of variation of simulated water requirement and yield using AgMERRA weather data was remarkably similar to the degree of variation observed in simulated water requirement and yield using OWD at all locations (distribution of CVs in simulated water requirement and yield using AgMERRA weather data were within ±5% of the CV calculated for simulated water requirement and yield using observed weather data) except Torbat Jam, Torbat Heydarieh and Gonabad for water requirement and Mashhad, Kashmar and Ghoochan for yield. There was good agreement between long-term average yield simulated with AgMERRA weather data and long-term average yield simulated using observed weather data. For example, the distribution of simulated yields using AgMERRA data was within 10% of the simulated yields using observed data at all locations. Using AgMERRA weather data resulted in simulated crop water requirement that were not in close agreement with crop water requirement simulated with ground station data at two location including Gonabad and Torbat Heydarieh.
Conclusions: These results supported the use of uncorrected AgMERRA daily maximum and minimum temperature and solar radiation in areas that their weather stations only have a few years of daily weather records available or areas without weather station. Considering the advantage of continuous coverage and availability, use of AgMERRA dataset appears to be a promising option for simulation of long-term average yield and water requirement, as well as for assessing impact of climate change on crop production and also estimating the magnitude of existing gaps between yield potential and current average farm yield in Khorasan Razavi province. But they are not very reliable for accurate simulation of water requirement and yield in a specific year and estimate their inter-annual variation.