A. Sheini-Dashtgol; Saeid Boroomand Nasab; AbdAli Naseri
Abstract
Introduction: Sugarcane fields of the southwest of Iran have heavy soil texture, high temperatures, hot and dry wind flow at spring and summer seasons. The electrical conductivity of irrigation water was considered about 1.1 dS.m-1, in basic designs of this irrigation method. In addition to sugarcane ...
Read More
Introduction: Sugarcane fields of the southwest of Iran have heavy soil texture, high temperatures, hot and dry wind flow at spring and summer seasons. The electrical conductivity of irrigation water was considered about 1.1 dS.m-1, in basic designs of this irrigation method. In addition to sugarcane production, sugar is a fundamental good in the economic section of Iran. It has multiple use in food, medical and chemical industry, production of by-products such as feedstuffs, yeast and alcohol, wood and paper. Sugarcane requires lots of water during the growing period and sensitive to water stress and is not compatible with long duration of flooding. If groundwater rises and covers the root zone, crop yield decreases due to root rot. Significant benefits are identified in terms of increased yield, improved crop quality, reduction in applied water, and reduced agronomic costs for weed control, fertilization, and tillage. Improved water management is crucial for a sustainable future, and SDI will be one tool that is available to improve water productivity. The main advantages of SDI are related to water savings because water is applied directly to the crop’s root zone, which prevents losses due to direct evaporation from the soil and deep drainage, and, if properly managed, SDI allows for the maintenance of appropriate levels of soil moisture. Due to the water crisis in Iran, this study aimed to reduce the volume of consumed water and water productivity for sugarcane and sugar yield by managing water consumption using drip irrigation for the first time in the cultivation of sugarcane. Material and Methods: According to recent droughts and severe water crises in Iran, subsurface drip irrigation was implemented in sugarcane for the first time. It seems that water consumed in subsurface drip irrigation is less than other methods. Therefore, its effect was investigated by 15, 20, and 30 cm depths and 75 cm space of subsurface emitters and comparison with control, on water productivity and sugarcane yield. An experiment based on randomized complete block design was carried out at the Sugarcane Research and Training Institute of Khuzestan in the South-West of Iran. After harvesting the plant field (start Ratoon), soil samples were collected at 0-30, 30-60, and 60-90 cm depths. In order to measure the bulk density of soil, samples were collected from the undistributed samples with sampler cylinders, and the texture was determined by the hydrometer method. To assess soil moisture percentage, pressure plate was used for determining content in field capacity (FC) and permanent wilting point (PWP) (the results were 25.1% and 12.9%, respectively). Emitters were pressure controlled emitter type, anti-siphon and the pressure at the pump station was 4.3 bar, and emitters with a flow 2.2 liter-1 and the depth of emitters pipes were 15, 20, and 30 cm from the surface soil. Depending on irrigation frequencies and irrigation water acidity, acid was injected into the irrigation water to prevent clogging of the emitters. After a specified time, it was discharged from the network. Regarding the presence of algae in irrigation water, chlorine gas was used in acid filtration before irrigation in field capacity. Finally, the average quantity and quality functions and Water Productivity in subsurface drip irrigation were compared with compression irrigation. For data fitting and curves, EXCEL software was used, and SAS statistical software was used for statistical analysis. Also, to investigate the salinity distribution in drip irrigation, the mean soil samples were used during the sampling period. The figures were drawn using 8 Surfer software in two dimensions. In drawing the shapes, Craig’s introspection was used. Results and Discussion: High evaporation, air temperature, and relatively low quality of irrigation water are the most important limiting factors for sugarcane irrigation in Khuzestan. It seems that according to the research records, the irrigation of subsurface drops with proper management is successful. Therefore, for this purpose, the effect of planting depth of 15, 20, and 30 and a distance of 75 cm drops and to compare with the regular irrigation of sugarcane lands as control (control), on water productivity and sugarcane yield complete random blocks was applied. The results of the analysis of variance of quantitative traits showed significant effects of the planting depth of droplets, in terms of yield at the level of one percent and in terms of stem height traits, number of stems per hectare, and water efficiency per sugarcane and produced sugar, at the level of five percent. According to the results of qualitative traits, the effect of treatment of droplet implant depth in all traits was non-significant. At a depth of 20 cm, the highest efficiency of water production for sugarcane and sugar production were 1.6 and 0.73 kg / m3, respectively. The lowest water productivity for sugarcane and sugar produced in the control treatment was 4.2 and 0.51 kg / m3, respectively. As a result, water productivity in the treatment of selected index (planting depth of 20 cm) per sugarcane and produced sugar has resulted in an increase of more than 30% in water productivity compared to the usual irrigation of fields (control). The results of salinity distribution around the droplets also showed that under the conditions of irrigation of subsurface droplets with salt water, the lowest salinity values were always seen as a range around the droplets. With increasing distance from the droplets, the salinity increased. More salts The drops are concentrated in the streams on both sides of the drops, The highest salinity occurred at the bottom of the furrow, and the lowest salinity was found on the ridge, where the drip pipe was planted and on either side of which there were two rows of reeds. Conclusion: Subsurface drip irrigation is one of the most optimal irrigation methods that are almost unknown to sugarcane in the executive, research, and academic sectors, and has been implemented for the first time in sugarcane cultivation in Iran. Given the recent droughts and the crisis and water scarcity, and the importance of environmental issues, it will be invaluable to investigate further and apply them. In general, in this study, using a flow rate of 2.2 lit/hr and a space of 75 cm and an installation depth of 20 cm droplets, the highest quantitative and qualitative functions and the highest water productivity per sugar cane. And the sugar produced. Also, regardless of any deepening treatment, the drip irrigation system, compared to the conventional irrigation system, reduced water consumption by about 20% and water yield by 26% per sugarcane and sugar produced. According to the results and considering the uniformity of moisture distribution, soil surface salinity, lack of runoff, protection of the discharge pipe, removal of surface evaporation and sugarcane root development, depth of 20 cm, application of the discharge pipe with a distance of 75 cm drops on the hose with a flow rate of 2.2 lit/hr are recommended. Also, although the distribution of moisture onions is provided up to a distance of 80 cm, a shorter distance between the droplets, such as 60 cm with the above flow, needs further investigation.
Reza Mazarei; AbdAli Naseri; amir soltani mohammadi
Abstract
Introduction: Surface irrigation systems are the oldest and common irrigation method. Surface irrigation is of low cost and energy requirements compared to sprinkler and drip irrigation systems. In general, a main large number of fields' data is needed to show the farm average condition. Infiltration ...
Read More
Introduction: Surface irrigation systems are the oldest and common irrigation method. Surface irrigation is of low cost and energy requirements compared to sprinkler and drip irrigation systems. In general, a main large number of fields' data is needed to show the farm average condition. Infiltration parameters are one of the most important parameters in surface irrigation systems and it has led to increase the irrigation systems efficiency, especially since the characteristics of infiltration vary with time and place. The modified kostiakov-lewis equation is one of the most useful infiltration equations in surface irrigation. In the current study, the infiltration parameters of the modified kostiakov-lewis equation were determined with two sets of usual methods including direct methods such as two-point Elliot and Walker and Input-Output, computer models such as SIPAR_ID and IPARM. Finally, the results were compared with the results of field experiments.
Materials and Methods: The current field was irrigated three times from 14 September to 31 October 2016 at the R 5-22 farm located in Salman Farsi Agro-Industry sugarcane fields with age of Raton 2. To collect the required data, the fields experiments were conducted on nine furrows of 250 m in length, 1.83m in space and 0.04% in slope, which all furrows were irrigated under three events and three inflow (1, 1.5 and 2 l/s), and fields’ data were obtained from experimental measurements during summer and autumn2016 at sugarcane fields of Salman Farsi Agro-Industry %. In the current study, the inflow rate and runoff were measured by W.S.C type 1 and 2 and all furrows divided into 10 stations. The advane time and infiltrated depth were measured at each stations. In this study 18 furrows were considered, nine furrows were used for testing and the other furrows had buffer roles. The furrows were irrigated by closed-end method. In this study, three indicators of infiltrated volume in the root zone, advance time and runoff volume were used to evaluate the accuracy of estimation of infiltration parameters. Surface irrigation model: WinSRFR 4.1.3 was used to simulate irrigation phases and infiltration value in each method. In this study, zero inertia model was used for simulation.
Results and Discussion: Results of this study showed that using the direct methods to estimate the infiltration parameters in WinSRFR 4.1.3 software improves the simulation process significantly. The results of the Two- Point and Input-Output method were showed a little difference with the results of the WinSRFR 4.1.3 software in simulation of the closed-end furrow irrigation process with sugarcane cultivated in furrows. The direct methods for infiltration parameters in furrow irrigation showed more accuracy than computer models in advance time , runoff and infiltrated water volumes. According to the results of this study, the Two-Point method in estimation of advance time with mean of RMSE, MAE and RE of 10.52, 14.91 and 10.1%, infiltrated water volume with mean of RMSE, MAE and RE of 9.6, 7.36 and 7.8 and runoff volume with mean of RMSE, MAE and RE of 8.8%, 8.7% and 1.2%, had a very acceptable performance. Also, the RMSE and RE values of other direct method (input-output method) were 11.4% and 6.8% for infiltrated water volume, respectively, and 1.6 and 0.3% for runoff volume, respectively, shows that this method has high accuracy in estimating these two performance indicators although this method with an average of 25.11% and 27.2% was not able to accurately simulate advance time. On the other hand, the results of computer models showed that the IPARM model with the average mean absolute error and relative error was 23.33, 15.5% of the advance time, 20.02 and 26.7% of the infiltrated volume and 11.81% and 1.8% estimated runoff volume, which was better than the SIPAR_ID model. Although computer models had acceptable performance in estimating infiltration parameters, direct methods performed better due to the use of more input data and data from all stages of irrigation. In general results of this study were showed that, if the direct methods for infiltration equations used Instead of the computers models in the designing, simulation and evaluation of the furrow irrigation systems, increased the accuracy of results to significantly and will improve and increase irrigation performance indicators.
Iman Nikravesh; Saeid Boroomand Nasab; AbdAli Naseri; Amir Soltani Mohamadi
Abstract
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass ...
Read More
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass and agricultural waste that is burned in the presence of low oxygen content or its absence. The hydrothermal process involves heating the biomass or other materials in a pressurized in the presence of water at a temperature between 180 and 250 C, and the result of this reaction is coal (Hydrochar) and soluble organic matter. Biochar and Hydrochar have several advantages such as climate change mitigation through carbon sequestration, soil cation exchange capacity (CEC) increasing, soil fertility, plant growth and root development, improved soil structure and stability, increased soil moisture storage capacity and soil pH adjustment. Coarse soils have large pores and they have low ability to absorb the water and nutrient. The aim of this research was to determine the optimum temperature of wheat straw Biochar and Hydrochar production, and to investigate the effect of these materials on bulk density, total porosity and moisture curve of Sandy Loam soil.
Materials and Methods: In order to produce biochar, at first the wheat straw was washed and dried in the oven. Then it was grinded and was made at different temperatures (200 to 600 ̊ C) inside a furnace for four hours. Similar to biochar, for producing hydrochar, after washing and drying the wheat straw it was grinded into particles ranges from 0.5 to 1 mm. Then it was placed in a stainless steel autoclave with deionized water. The autoclave was heated at different temperatures between 140-230 ̊ C for four hours. The optimum temperature for producing of biochar and hydro-char was determined by using stable organic matter yield index (SOMYI), and it was used in this study. The pH and EC of the biochar and hydro-char samples were measured by combining 1 g of a sample with 20 mL DI water. The cationic and anionic exchange capacity were determined by replacing sodium nitrate with hydrochloric and potassium chloride (Chintala et al., 2013). Surface area was obtained using methylene blue method. A CHNSO Elemental Analyzer (Vario ELIII- elementar- made in Germany) was used to determine the content of C, N, H, S and O in the samples. Potassium and sodium content were measured by flame photometer and calcium and magnesium were measured by titration with EDTA. Biohchar and hydrochar treatments were applied at three levels of 2, 5 and 10 mg / kg soil in three replications in 21 lysimeter. The bulk density, total porosity and moisture curve of soil were measured after four-month irrigation period.
Results and Discussion: According to the calculated value of stable organic matter yield index (SOMYI) at various temperatures in this study, the maximum thermal constancy of wheat straw biochar was 16.20 at temperature of 300 ̊ C and for hydro-char was obtained as 6.13 at the temperature of 200 ̊ C. So, the temperatures of 300 and 200 ̊C were determined as the optimum temperature of sustainable carbon biochar and hydro-char production and were used to continue the experiments of this study. The results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to soil compared to control treatment significantly decreased the bulk density of the soil, 8.97, 11.77, 15.17, 7.9, 10 and 13.10 percent respectively. Also, results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to the soil as compared to control treatment increased soil porosity by 8.8, 11.48, 15.77, 6.48, 9 and 22.13 percent, respectively. The reason for reducing the soil bulk density and increasing the total porosity of soil can be due to the mixing of the soil with materials with a lower bulk density and the effect of increasing the organic matter of the soil due to the use of Biochar and Hydrochar. Based on statistical analysis, wheat straw Biochar and Hydrochar had a significant effect (P
bijan haghighati; saeed Broomand Nasab; AbdAli Naseri
Abstract
Introduction: Potato is one of the main products of agriculture in feeding the world's population and agricultural economy. The production of potato in the world occupies the forth place after wheat, rice and corn. In Iran, annual production of more than 5.5 million tons potato, has made this crop the ...
Read More
Introduction: Potato is one of the main products of agriculture in feeding the world's population and agricultural economy. The production of potato in the world occupies the forth place after wheat, rice and corn. In Iran, annual production of more than 5.5 million tons potato, has made this crop the most important food after wheat. On the other hand, in arid and semi-arid regions, water is the most important limiting factor for production of agricultural crops such as potato. Considering the water use efficiency is one of the most effective ways to deal with the water crisis and increasing the quality and quantity of agricultural productions. Production increasing per unit of water consumed (increasing water productivity) by improving the selection of plant varieties, irrigation management and use of new irrigation methods may be feasible.
Material and Methods: The research was performed in the Chahartakhteh research station (32° 18' N. and 50° 55' E.) with 2090 m height above sea level and semi-humid climate with moderate summers and cold winters. Average annual rainfall is about 320 mm mostly during winter. The soil moisture and temperature regimes are Typic Xeric and Mesic, respectively. Soil texture is silty clay.
In order to determine the best method of deficit irrigation for optimizing water use efficiency and yield of two potato cultivars, an experiment was performed in Agricultural and Natural Resources Research Center of Chaharmahal va Bakhtiari farm in 2013. The experiment was based on randomized completely blocks with split - split plot design in three replications. The furrow and tape drip irrigation methods were as the main plots, two potato cultivars as sub plot units and four deficit irrigation managements as the secondary sub plot units including CI(100%), RDI80(80%), RDI65(65%) of available water depletion (AWD) and partial root-zone drying (PRD) during full growth period.
Almera and Burren cultivars are two new cultivars of high yield and quality of early growth period of approximately 90-80 days, high compatibility with Chaharmahal va Bakhtiari climate and more regions of Iran.
Results and Discussion: Analysis of variance (ANOVA) of studied factors showed that the deficit irrigation management on tuber yield (ton/ha), tuber yield per plant, the amount of starch, soluble sugar, proline, chlorophyll, water use efficiency, and water productivity were significant (P≤0.01). Effects of cultivar on tuber total yield, tuber yield per plant, soluble sugar, water use efficiency, and water productivity were significant (P≤0.01). The interaction between cultivar and deficit irrigation management was only significant (P≤0.05) on tuber yield (ton/ha), proline, water use efficiency and water productivity.
The results showed that Burren cultivar in comparison with Almera was better in tuber yield (19%), water productivity (20%), water use efficiency (19%), and resistance of draught in all deficit irrigation treatments. Maximum tuber yield (59.02 ton/ha) was obtained in Burren cultivar under complete irrigation. Minimum tuber yield (23.1 ton/ha) was obtained in Almera cultivar under deficit irrigation management RDI65 (65% of available water depletion). The maximum water use efficiency (16.79 Kg/m3) and water productivity (14.78 Kg/m3) were obtained under tape irrigation and partial root-zone drying (PRD) treatment. The minimum water use efficiency (7.46 Kg/m3) and water productivity (4.81 Kg/m3) were obtained under furrow irrigation and deficit irrigation management RDI65.
Effect of cultivar was not significant on amount of irrigation water during the growing season. The amount of irrigation water for two cultivars was the same and 4711 m3.ha-1. The amount of irrigation water in the different deficit irrigation managements showed that the highest water use was in CI (5615 m3 ha-1) and lowest water use was in deficit irrigation management RDI65 (4065 m3 ha-1) treatments.
Deficit irrigation management RDI80 ،PRD and RDI65 in comparison with CI led to reduction of irrigation water amount 16, 21 and 28% of irrigation water amount.
Conclusion: Due to the results of this study, the high consumption of water in agriculture, for optimal use of available water resources, the methods with high water use efficiency and productivity, such as tape irrigation, the PRD irrigation management and the use of drought resistant cultivars is recommended. According to the limitation of water resources, for optimizing water use, the best suggestion for reducing water use on potato, is using Burren cultivar with suitable quality and high yield potential, and deficit irrigation management (PRD).
M. Ghahremannejad; Saeid Boroomand Nasab; AbdAli Naseri; A. Sheini Dashtegol
Abstract
Introduction: Infiltration is the most important physical properties of agricultural soils. Infiltration families are general relationships that attempt to categorize the infiltration behavior of soils. Walker et al. (2006) discussed the assumptions and procedures used to develop the original NRCS families. ...
Read More
Introduction: Infiltration is the most important physical properties of agricultural soils. Infiltration families are general relationships that attempt to categorize the infiltration behavior of soils. Walker et al. (2006) discussed the assumptions and procedures used to develop the original NRCS families. Those families categorize infiltration behavior according to their steady-intake rate and were developed largely from border irrigation data. As such, those families have been more widely adopted in border/basin irrigation analyses than in furrow studies. In 2004, NRCS decided to revise the families, largely with the goal of enhancing their applicability to furrow irrigation (Walker et al., 2006). In contrast with the original families, Walker et al. (2006) categorized infiltration based on the average rate during the first 6 h of opportunity time. The new families were developed from furrow infiltration measurements, and then adapted to border conditions. Those infiltration measurements were obtained under inflow rate, slope, cross section, and roughness conditions. Recognizing that these flow conditions affect flow depth and that flow depth affects infiltration in furrows, Walker et al. (2006) proposed procedures for adapting the parameters to new hydraulic conditions. Procedures are also provided for adapting the parameters to events late in the irrigation season. Another important aspect of the new families is the use of the Extended Kostiakov equation, which represents steady-state infiltration better than the Kostiakov formula employed by the original NRCS families. The procedures used to adapt the furrow infiltration parameters to different hydraulic conditions are empirical. From the available data, Walker et al. (2006) developed relationships for the reference parameter values (Kref, aref, and f0ref) and reference hydraulic conditions (discharge Qref and wetted perimeter1 WPref) as a function of Fn, the family value.
In this study the currency of revised SCS method to estimate infiltration parameters of furrow irrigation systems in Amirkabir sugar cane fields was evaluated. For this purpose, infiltration parameters and the cumulative 6 hours infiltration (z) for furrow irrigation systems of this region was estimated with revised SCS method and, then compared with field measurement of z. Then, general functions were developed to adjust the parameters to later flow irrigation conditions.
Materials and Methods: This research was carried out from January 2010 to December 2011. As one of the research fields of Sugarcane Research Center in Amir Kabir Sugarcane Planting and by Products Company of Khuzestan. The field work was conducted on one set of furrow irrigation. This set had three furrows1.8 m wide and 140 m long. The middle furrow of each set was used to take measurements, while the side furrows were used as buffering area. The intake family numbers in revised SCS method (Fn) based on the average infiltration rate during the first 6 h of irrigation. To determine the Fn, double ring experiment were performed before irrigation. Then revised SCS parameters and original SCS parameters were determined. By measuring inflow, outflow, and calculating surface water storage, the volume of infiltrated water was determined. The advance and recession times were recorded at 14 points at 10 m intervals along each furrow. Seven irrigation events were examined. Fiberglass flumes (WSC) type II was used at the beginning and the end of each furrow in the first set where inflow/outflow measurements were to be taken. Experiments were carried out in order to determine the final infiltration rate (f0) with the assumption of uniform soil infiltration characteristics. First, inflow and outflow of the furrow were measured at the beginning and the end of two Fiberglass WSC flumes. Then, when the flow reached a constant level, f0 was measured.
Results and Discussion: For evaluation of the results, four statistical indices: average prediction error of model (Er), distribution into 45° line (λ), determination coefficient (R2) and average relative error of model (Ea) were used. According to the results, revised SCS method overestimated infiltration value and it had an excessive error. Due to the high error of this technique, empirical formulas for reference parameters to this irrigation conditions was determined. The values of a, K, and F0 parameters were measured in field and correlated with the NRCS Family Number, Fn. Then, general functions were developed to adjust the parameters to later flow irrigation conditions. Review the accuracy of the presented functions showed that these functions with values of λ, R2 and Ea respectively 0.95, 0.91 and %4.5, has the best prediction of infiltration. The coefficient of irrigation condition factor (ICF) for the desired area was determined that the average numeric value equal to 0.82. According to the results of Walker et al. (2006), a typical later continuous intake can be estimated by ICF of 0.80. The average value of the 6 h intake rate (Fn) for the desired area is 0.46 and the average value of basic infiltration rate (f0) is 0.48 which is larger than Fn. This is consistent with the results of Walker et al. (2006).
Conclusion: Results of this study showed that the original SCS method has underestimated cumulative infiltration and revised SCS method with furrow irrigation equations has the overestimated cumulative infiltration. General functions were developed to adjust the parameters to later flow irrigation conditions. Review the accuracy of the presented functions showed that these functions have the best prediction of infiltration. The coefficient of irrigation condition factor (ICF) was also determined, (ICF= 0.82).
A. Sadeghilari; Hadi Moazed; AbdAli Naseri; A. Mahjobi; A.M. Liaghat
Abstract
In arid and semiarid regions, controlled drainage is the next logical step towards improving water management in irrigated agriculture and reducing the environmental impacts of subsurface drainage flow. Controlled drainage has been practiced in humid areas for a long time. In this research a controlled ...
Read More
In arid and semiarid regions, controlled drainage is the next logical step towards improving water management in irrigated agriculture and reducing the environmental impacts of subsurface drainage flow. Controlled drainage has been practiced in humid areas for a long time. In this research a controlled drainage system in Khuzestan Province, Southwest Iran was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields. To study the feasibility and performance of water table management, Field experiments were carried out on a 63.41 ha with 3 treatments on the farms under subsurface drainage of Imam Khomeini's sugarcane agro-industry. 3 treatments compared consisted of a free drainage treatment (FD) and tow controlled drainage treatment with water table controls set at 90 centimeter (CD90) and 70 centimeter (CD70) below the soil surface. Collected data during a sugarcane growing season included water table depth, drained volume, nitrate-nitrogen and ammonium-nitrogen concentration in the drainage water and groundwater. Controlled drainage had a significant hydrological and environmental effect during studding period. Compared with CD, the total drain outflow from CD70 and CD90 area were 62.48 and 48.98% less, respectively. Compared with CD, the total amounts of nitrate-nitrogen and ammonium-nitrogen in drain outflow were about 45 to 60 % and 50 to 65 % less, respectively. Nitrate-nitrogen and ammonium-nitrogen concentration in the both of drainage water and groundwater did not differ significantly in all of the treatment. These data suggest that controlled drainage can be applied at big scale in the Khuzestan Province with the most installed subsurface drainage in Iran, with advantages for water conservation and environment.
A. Mahjoubi; A. Hooshmand; AbdAli Naseri; S. Jafari
Abstract
Sugarcane is one of the high consumption plants that has very high drainage coefficient. Irrigation frequency of Sugarcane in the maximum of consumption month is near 5 days and drainage systems often are removing drain water more than enough from the soil. This study was carried out to investigate the ...
Read More
Sugarcane is one of the high consumption plants that has very high drainage coefficient. Irrigation frequency of Sugarcane in the maximum of consumption month is near 5 days and drainage systems often are removing drain water more than enough from the soil. This study was carried out to investigate the impact of controlled drainage on reduction of drainage coefficient and drainage volumes in three fields of Imam Khomeini sugarcane agro- industry. Two treatments were controlled drainage with water table controlling in 70 and 90 cm depth from soil surface (CD70, CD90) and the third one was free drainage (FD) treatment. According to the results, the CD treatments significantly reduced drainage coefficient during the study, compared to free drainage treatment. Average drainage coefficient in during the study in CD70, CD90 and FD treatments was 3, 4.12 and 8.98 mm/day respectively. Controlled drainage treatments (CD70, CD90) reduced drainage coefficient by 67% and 54% respectively, compared to free drainage treatment. CD70 treatment reduced drainage coefficient by 27%, compared CD90 treatment, too. The use of controlled drainage did not limited for plant growth and did not reduce sugarcane yield. Using of this method, in addition to the economic benefits will cause decreasing river pollution load and has a positive environmental impact.
I. Nikravesh; Hadi Moazed; S. Broomandnasab; AbdAli Naseri
Abstract
Many of irrigated agriculture problems are resulting from chemical and physical composition of irrigation water. The irrigation water quality is effective on soil moisture characteristic curve by effect on soil structure, pore size distribution and continuity of them. The aim of this study was to evaluate ...
Read More
Many of irrigated agriculture problems are resulting from chemical and physical composition of irrigation water. The irrigation water quality is effective on soil moisture characteristic curve by effect on soil structure, pore size distribution and continuity of them. The aim of this study was to evaluate the effect of different water salinity in the presence of constant turbidity on the soil moisture curve. The salinity treatments at five levels (1, 2, 4, 6 and 8 dS/m) with constant turbidity (200 NTU) were applied. These treatments were investigated at three depths of soil (0 to 15, 15 to 30 and 30 to 45 cm) with a silt-loam texture with three replications in a randomized complete block design. Soil water retention curve was determined by using pressure plate method. The results were statistically analyzed with MSTATC software. The results showed that the water percent of the soil of S2, S3, S4, S5 treatments of irrigation water quality increased to values 13.65, 20.20, 23 and 30 percent compared to S1 treatment. Comparison of water percent of soil at various depths showed that the depth of the second and third compared to the first decreased to 1.40 and 2 percent.
S. Hamzeh; AbdAli Naseri; H.A. Kashkuli
Abstract
Two issues of the drainage systems which are less studied in the literature are drainage in layered soils and bi-level derange systems. Hence, it is necessary to do more research in these topics. Therefore the present study was carried out under above conditions in the Imam Khomeini Farming and Industrial ...
Read More
Two issues of the drainage systems which are less studied in the literature are drainage in layered soils and bi-level derange systems. Hence, it is necessary to do more research in these topics. Therefore the present study was carried out under above conditions in the Imam Khomeini Farming and Industrial Lands, located in the north of the Khuzestan province, Iran. In this area based on primary studies, lateral spacing was estimated about 70 m and they were installed at the depth of 2.1m. But after two years of establish these drainage systems, it was observed that due to existence a soil layer with a very low infiltration rate (less than 10 time in compare with its above and below layers) at the depth of 110 to 160 cm, drainage systems in 500ha of these fields had low performance. Then, in order to overcome with this problem, the implementation of bi-level drainage system was proposed. Hence, a new drain line was installed at the depth of 1.2m between the old drain lines. After establishment of these new drains one field was selected to evaluation the performance of this new system. In the selected field three rows of observation wells were installed (in total 20 observation wells). After equipment of these observation wells, water table fluctuation, inflow and outflow water values from the field were measured in 3 irrigation periods. Then the results of field observations were compared with the obtained results from analytical solution in the literature. Results show with establish new drain lines the problem of these fields are solved and the water table profile will drop-off to the below of root zone in less than 36hr. Also it was concluded that the rate of water table decline by moving from the end of field to the open collector of field will be increased and the discharge of deep drains are more than low-deep rains. Results show that analytical solution is not able to predict the water table profile with well accuracy and predicted values by this equation only in a small area of water table profile were consistent with the observed values in the field. The main reason of this difference was the specific situation of layers of the soil.
H. Ramezani; A. Liaghat; A.A. Naseri
Abstract
Abstract
Drainage water created from irrigation and drainage projects in south of Khuzestan province are saline and its disposal to rivers such as Karoon river is faced with certain constraints. One of drainage water disposal strategies is using evaporation ponds, in which the most important outlet ...
Read More
Abstract
Drainage water created from irrigation and drainage projects in south of Khuzestan province are saline and its disposal to rivers such as Karoon river is faced with certain constraints. One of drainage water disposal strategies is using evaporation ponds, in which the most important outlet is evaporation. Evaporation rate of saline water of these ponds is lower than fresh water. In this study the evaporation rate of implicit ponds for drainage water control in Mirza Kuchak Khan Project was estimated by adjusting the saturation vapor pressure equation of saline water with regard to pure water and by using of Penman equation. Finally, using the evaporation and the annual drain water volume, the required area of evaporation ponds was determined. By evaporation of water from ponds the salinity of water increases. This increase of salinity continues until the salt saturation threshold is reached, and then salts precipitate. The most common salt in drainage water of Khuzestan province is NaCl which has a saturation threshold of 300 g/lit. The results showed that the average annual evaporation of water with 300 g/lit salt is 1903 mm. The drainage water volume produced from Mirza Kuchak Khan Project (12,000 ha area), requires evaporation ponds as big as 7740 ha. This study showed that disposal of the drainage water of sugarcane projects is impossible if only evaporation ponds are used, and therefore, other management options should be considered for reducing the volume and salinity of drainage water.
Key words: Evaporation ponds, Drainage water, Khuzestan, Salinity