K. Kamali; Gh. Zehtabian; tayybe Mesbahzadeh; M. Arabkhedri; Hossain Shohab Arkhazloo; A. Moghadamnia
Abstract
Introduction: Soil quality is an essential indicator for sustainable land management that generally depends on soil physical, chemical and biological properties. Due to the multiplicity of soil properties, the number of variables is usually reduced to a minimum set by statistical methods, which reduces ...
Read More
Introduction: Soil quality is an essential indicator for sustainable land management that generally depends on soil physical, chemical and biological properties. Due to the multiplicity of soil properties, the number of variables is usually reduced to a minimum set by statistical methods, which reduces study time, decreases monitoring cost for sustainable use of agricultural lands. The aim of this study was to introduce the most effective soil characteristics of agricultural lands in Mohammadshahr plain, Karaj, to prevent the descending trend of soil quality.
Materials and Methods: In this study, four farms and orchards which were different in terms of crop type and irrigation system were selected and evaluated with Integrated Quality Index (IQI) and Nemero Quality Index (NQI). In both indicators, the characteristics affecting soil quality are combined in the form of a mathematical model and presented as a numerical quantity. For this purpose, first 12 soil profiles were described, followed by sampling from topsoil (surface layer) and sublayers (weighting average for the depths) and testing 17 soil characteristics affecting its quality. In the next step, both indicators were calculated using two different sets of soil properties. The first category, the Total Data Set (TDS), included all measured soil characteristics, and the second group, the Minimum Data Set (MDS), included the most important properties affecting soil quality. The Principle Component Analysis was implemented to select the MDS. Soil properties were scored to calculate IQI and NQI. For this purpose, a function was defined for each soil feature to standardize all scores between zero and one. Weighting various soil quality properties was also performed by calculating the common variance of the variables, which was obtained by factor analysis method.
Results and Discussion: Calculation of IQI and NQI indices showed that the topsoil samples were in grade III and sublayer samples belonged to grade IV with major limitations due to lack of profile development, organic carbon deficiency, salinity and high gravel. Four and six items out of 16 variables were identified effective for topsoil and sublayers, respectively. The IQI index based on TDS was more accurate and sensitive than the NQI index for soil quality assessment, as more features are considered for TDS. In the IQI index, both the weight of attributes and their scores are effective, while in the NQI index, only the attribute score is considered. On the other hand, the coefficient of determination between the TDS and MDS for topsoil and sublayer samples was 0.55 and 0.56% for IQI model, respectively, and 0.48 and 0.16% for NQI model, respectively. In other words, the determination coefficients showed the reliability of using the MDS instead of TDS in both IQI and NQI models. In the MDS, mean weight diameter (MWD) showed the highest effect on the surface layer and percentage of gravel had the greatest impact on the soil quality of the sublayer.
Conclusion: Although TDS took into account all soil properties and showed a slightly higher coefficient of determinations with both soil quality indicators, the MDS obtained similar results to the TDS with only about half of the properties. In the MDS, the features with an internal correlation is eliminated rendering it more cost effective. The results of this study assist decision-makers to choose better quality management and soil sustainability strategies while decreasing the monitoring cost.
H. Ahmadi; T. Mesbahzadeh
Abstract
Abstract
In this research sand drifts potential using sand rose graph software and Fryberger velocity classes’ method investigated. Thus Wind data between 1985 and 2005 from meteorological stations of Jask and Kerman were analyzed to examine sand drift potential. Sand drift potential amount of Kerman ...
Read More
Abstract
In this research sand drifts potential using sand rose graph software and Fryberger velocity classes’ method investigated. Thus Wind data between 1985 and 2005 from meteorological stations of Jask and Kerman were analyzed to examine sand drift potential. Sand drift potential amount of Kerman station was 412.6 using sand rose graph and 401.09 using Fryberger,s method. Sand drift potential amount of Kerman station using sand rose graph and Fryberger,s method was 979.2 and 490.51 (v.u) respectively. The calculated values of sand drift potential by two methods showed that there is a little difference between two methods while about Kerman station the calculated values with software is more than Fryberger, s method because this method do not account the speed more than 40 knot .Also, the velocity values has been considered normal in Fryberger,s method while velocity values in one class are not normal, and we can't attribute one number to whole of velocities in each class.
Keywords: Wind erosion data, Fryberger,s method, Sand rose graph software, Drawing sand rose