L. Qasemi far; A. Golchin; F. Rakhsh
Abstract
Introduction: The accumulation of heavy metals in water, sediments, and soils has led to serious environmental problems. In recent years, several processes have been developed with the aim of reducing or recovering heavy metals from contaminated environments. Physical and chemical approaches are capable ...
Read More
Introduction: The accumulation of heavy metals in water, sediments, and soils has led to serious environmental problems. In recent years, several processes have been developed with the aim of reducing or recovering heavy metals from contaminated environments. Physical and chemical approaches are capable of removing a broad spectrum of contaminants, but the main disadvantages of these methods lie in the increased energy consumption and the need for additional chemicals. In recent years, the processes such as bioleaching, biosorption, bioremediation, phytoremediation, and bio precipitation are all based on the use of microorganisms that have the ability to solubilize, adsorb, or precipitate heavy metals. Therefore, it is necessary to find some solutions to reduce the negative effects of heavy metals in soil. Materials and Methods: A factorial experiment was conducted in the greenhouse of the Faculty of Agriculture, the University of Zanjan, using a completely randomized design with three replications. In this experiment, the effects of different levels of soil cadmium (0, 5, 10, 25, and 50 mg/Kg) and soil inoculation (without inoculation and inoculation with Glomus mosseae, Glomus intraradices, Glomus mosseae + Rhizobium trifolii, Glomus intraradices + Rhizobium trifolii bacterium, Rhizobium trifolii, Glomus mosseae + Glomus intraradices and Glomus mosseae + Glomus intraradices + Rhizobium trifolii) on growth of berseem clover were assessed. Results and Discussion: The results of this study showed that the soil cadmium levels has a significant effect (p < 0.05 and p < 0.01) on fresh weights of aerial parts and roots, height, number of the plant in the pot, Fe, Zn and Cd concentrations in aerial parts and roots of berseem clover. The fresh weights of aerial parts and roots, height, number of the plant in the pot, Fe and Zn concentrations in aerial parts and roots of berseem clover decreased as the levels of soil cadmium increased. The lowest concentrations of iron and zinc were measured in treatment with 100 mg Cd/Kg. Also, Cd concentration in aerial parts and roots increased as the level of soil cadmium increased. The results of this experiment showed that soil inoculation with mycorrhizal fungi and Rihzobium trifolii had a significant effect (p < 0.05 and p < 0.01) on fresh weights of aerial parts and roots, height, number of plant per pot, Fe, Zn and Cd concentrations in aerial parts and roots of berseem clover. The inoculation of soil with mycorrhizal fungi and Rhizobium trifolii increased the fresh weights of aerial parts and roots, height and No. of plant per pot. The highest fresh weights of aerial parts and roots of berseem clover, height, and number of plant per pot were obtained in treatments co-inoculated with Glomus mosseae and Rhizobium trifolii. The highest and lowest concentrations of iron and zinc in aerial parts and roots of berseem clover were measured, respectively, for the treatment co-inoculated by Glomus mosseae and Rhizobium trifolii and control treatment (without inoculation). However, the opposite trends were found in Cd concentrations in the plant. The highest and lowest Cd concentrations in aerial parts and roots were measured in control treatment (without inoculation) and treatment co-inoculated by Glomus mosseae and Rhizobium trifolii (MT), respectively. Conclusion: Bioremediation and phytoremediation are considered as two very safe and necessary technologies which naturally occur in the soil by microbes and plants and pose no hazard to the environment and the people life. The procedure of bioremediation and phytoremediation can be simply carried out on site without initiating a major disruption of normal actions and threating the human life and the environment during transportation. Bioremediation and phytoremediation are used less than other technologies for cleaning-up the wastes and contaminated soils. Microorganisms and plants possess inherent biological mechanisms that enable them to survive under heavy metal stress and remove the metals from the environment. These microbes use various processes such as precipitation, biosorption, enzymatic transformation of metals, complexation and phytoremediation techniques of which phytoextraction and phytostabilization have been very effective. However, environmental conditions need to be adequate for effective bioremediation. The use of hyperaccumulator plants to remediate contaminated sites depends on the quantity of metal at that site and the type of soil. The results of this experiment showed that the Rhizobium trifolii and Glomus mosseae could be used to reduce the soil cadmium contamination. Also, the berseem clover is a hyperaccumulator plant for phytoremediation of cadmium in soils. According to the results of this study, co-inoculation of mycorrhizal fungus Glomus mosseae and Rhizobium trifolii can be recommended to improve the yield and uptake of micronutrients such as iron and zinc in cadmium contaminated soils.