Hassan Lotfi Parsa; Ghasem Asadian
Abstract
Introduction: Soil organic carbon (SOC) is released from decomposition of plant residues, while root secretion products in rhizosphere are also a substantial source of SOC input to soil. Binding SOC to clay minerals leads to increase aggregate stability and protect organic carbon against microorganisms. ...
Read More
Introduction: Soil organic carbon (SOC) is released from decomposition of plant residues, while root secretion products in rhizosphere are also a substantial source of SOC input to soil. Binding SOC to clay minerals leads to increase aggregate stability and protect organic carbon against microorganisms. Organo-mineral complexes have important role in decreasing organic carbon decomposition. Assessment of organic carbon particle size and biochemical fractionation is an appropriate approach to investigate organic carbon dynamics and durability against microorganisms in rhizosphere as a hot spot of activity.
Materials and Methods: The study area was a semi-arid rangeland with the main plants species including five perennial rangeland species: crested wheat grass (Agropyron cristatum), astragalus (Astragalus verus), sheep fescue (Festuca ovina), phlomis (Phlomis oliveri), feverfew (Tanacetum parthenium). Whole soil surrounding plant roots with all roots was taken for each plant. Three sample with different distances from root surface were taken by applying this procedure: sample A: The soil which is adhered to the root surface and separates quickly from roots after drying, sample B: The soil in root zone, which is not stuck and almost is so close to roots, sample C: The soil which is wholly far from root area and apparently not affected by roots. Intact samples removed from ground and transferred quickly to laboratory to separate roots and soils with different distances from root surface by drying the root system before shaking. Particle size fractionation was done by wet sieving of aggregates and SOC in different aggregate sizes was measured by wet combustion method. Biochemical fractionation of SOC was done by acid hydrolysis method to study organic carbon stability at different distances from root surface.
Results and Discussion: ANOVA results showed a significant effects of plants and distance from root surface on aggregate size classes. The results showed the increasing amounts of microaggregates at root vicinities compare to macroaggregates. By increasing distance from root surface, the >2 mm aggregates increased, but, the amount of <0.15 mm aggregates decreased significantly. Toward root surface from C to A locations, the mean weight diameter (MWD) of soil aggregates decreased due to decreasing macro-aggregates at root vicinity. Maenwhile, SOC increased approaching to root surface due to root exudates and rhizodeposits. The highest and lowest of SOC content were found in the A location of Feverfew and the C location of Astragalus (4.16 and 0.82%), respectively. The OC contents in root vicinity were higher than other locations due to high root exudates and rhizodeposits which had C-containing molecules. Soil OC contents had significant correlation with measured soil parameters. The highest SOC content was found in micro-aggregate and in vicinity of roots. Low-decomposed OC, which has crucial role in linking microaggregates to make macroaggregates, led to high OC contents in macroaggregates. Soil OC biochemical fractionation demonstrated higher OC contents in recalcitrant pool at further distances from root surface, while by going toward root vicinity the amounts of OC in water soluble and labile pool increased. In average for A locations, 66% of total OC was measured as water soluble fraction, while for C location, the average fraction of labile and recalcitrant pools from total OC were found 62.5% and 50%, respectively. As the root exudates had fresh OC such as carbohydrates and sugars, the concentration of OC in water soluble and labile pools were so high at root vicinity. Moreover, OC in labile and water soluble pools had high correlation coefficient and, contributed to high fractions of total OC in root vicinity. Whilst C in recalcitrant pool were found higher in further distances from root surface, because activities of microorganisms and the fresh OC were decreased toward bulk soil.
Conclusion: This study investigated the effect of root activities of five perennial rangeland plants on the particle size and biochemical fractionation of soil OC at different distances from root surface. In root vicinity due to addition of fresh OC from roots to soil and higher microorganisms’ activities, mineral particles were aggregated to micro-aggregates which contained a large fraction of soluble and labile Soil OC. But, recalcitrant OC were dominated in macro-aggregates far from root surface. Rangeland plants with various root systems and characteristics had strong impact on particle size and biochemical fractionation of soil OC which needs more investigation. Durability of biochemical C pools has important role in carbon dynamic and stability in soil.
Khadije Salarinik; Mohsen Nael; Ghasem Asadian; Ali Akbar Safari Sinegani
Abstract
Introduction: Soil organic matter is influenced strongly by vegetation cover and management, therefore it is proposed as the main indicator of soil quality and health. The changes in soil organic matter status occur much more rapidly in the labile pools than in organic C. Thus, labile pools can be used ...
Read More
Introduction: Soil organic matter is influenced strongly by vegetation cover and management, therefore it is proposed as the main indicator of soil quality and health. The changes in soil organic matter status occur much more rapidly in the labile pools than in organic C. Thus, labile pools can be used as early indicators of changes in total organic matter that will become more obvious in the longer term here. In addition, the labile fraction has a disproportionately large effect on nutrient-supplying capacity and structural stability of soils. Land management as well as soil and environmental conditions lead to the deployment of different plant communities in rangeland ecosystems, which in turn may have different effects on soil quality indicators. The main objective of this research was to investigate the influence of different vegetation covers on the quantity and quality of soil organic carbon fractions in Gonbad experimental watershed, Hamadan. Moreover, the seasonal changes of selected soil carbon fractions were investigated.
Materials and Methods: Paired Gonbad watershed in Hamedan consists of two sub-basins: in control sub-basin no grazing management is applied, while in protected sub-basin, grazing has been restricted to a very short period in late autumn since 2002. Average annual precipitation and average annual temperature in the area are 304.4 mm and 9.5 °C, respectively (5). The soil cover of the watershed consists of TypicCalcixerepts, TypicHaploxerepts and Lithic Xerorthents (9). Five different vegetation typesof which, grasses (G), Astragalus-Bromus (A-B), Astragalus-Artemisia (A-A), Astragalus-Lactuca (A-L) in protected sub-basin, and Astragalus-Euphorbia (A-E) in control sub-basin, were selected. In addition, a formerly cultivated hilly land outside the watershed, now under rainfed wheat farming (RW) was selected as a non-pasture vegetation type. All of the six vegetation types were similar in terms of soil parent materials and slope aspect.. Soil and plant sampling were conducted in mid-autumn 2012 (a), and late spring 2013 (s). Three plots (1*1 m2) were studied in each vegetation type. Total organic carbon (TOC), carbon stock (CS), carbon stock normalized with sand(CS/Sa), active carbon (AC), normalized active carbon (AC/TOC), soil carbohydrates (Ch), normalized carbohydrates (Ch/TOC), basal respiration (BR) and normalized basal respiration (BR/TOC) were measured in surface soils (0-15 cm). A factorial experimental design with two factors, vegetation type (6 levels) and time (2 levels), was conducted. Prior to statistical analysis, data were normalized, if required.
Results and Discussion: TOC and CS contentswere significantly different between vegetation types. A-B and A-A had highest canopy cover, litter cover and species diversity. Species diversity in the rangeland ecosystems has direct effect on fodder production and soil organic carbon content. A-E site, despite its low TOC content, hadhigher CS/Sa (51.9 Mg/ha) due to higher amount of clay content, compared to A-A (43.1Mg/ha) with higher TOC content. The amount of AC andAC/TOC in different vegetation types is proportional to the amount of TOC, CS, total canopy, and the canopy and production of herbaceous species. AC content was significantly highest in A-B (711.7 mg/kg), and lowest in RW site(262.6 mg/kg). A-B site is rich in grass species with high amounts of readily decomposable root residues and exudates. The variation of carbohydrate contents in different vegetation types wasvery similar to that of total organic carbon, in that A-B and A-A exhibited the highest (5843 and 5258 mg/kg, respectively) and RW showed the lowest (1937 mg/kg) carbohydrate contents. The woody, not easily decomposible litters in A-A explainedthe high content of Ch/TOC (38.12%) in this site; low rate of humification entails increased soil carbohydrates. Ch/TOC was significantly lower in A-E than other covers. The highest BR andBR/TOC, were observed in A-B and A-A sites, mainly due to the high canopy cover, species richness,and soil organic matter. The lowest BR andBR/TOC were observed in A-E.Thesoil texture in this site was clay.The recirculation of organic matter in fine-textured soils is low because of organic materials protection from microbial decomposition. Total organic matter and labile organic carbon inputs werelower in A-L, A-E and G sites; this may explain the reduction of microbial activity in these vegetation types. Except for AC/TOC, Ch, and BR, seasonal changes of all other indicators were significant. Unlike other indicators, the content of Ch/TOC was significantly higher in autumn than spring.
Conclusion: Vegetation types had significant effects on selected soil quality indicators, so that A-A and A-B sites exhibited the highest soil quality, mainly because of higher vegetation cover, litter, and plant diversity. RW, followed by A-E site, demonstrated the lowest soil quality due to the tillage practices and low plant residue inputs in the first case, and overgrazing of vegetation cover and litter in the second. Total soil organic carbon and active carbon were significantly higher in spring compared to autumn. Seasonal changes of basal microbial respiration and carbohydrates were not statistically significant.