F. Ahmadi
Abstract
Introduction: Surface water has always been one of the most essential pillars of water projects and, with modeling and predicting the river flow, in addition to the management and utilization of water resources, it is possible to inhibit the natural disasters such as drought and floods. Therefore, researchers ...
Read More
Introduction: Surface water has always been one of the most essential pillars of water projects and, with modeling and predicting the river flow, in addition to the management and utilization of water resources, it is possible to inhibit the natural disasters such as drought and floods. Therefore, researchers have always tried to improve the accuracy of hydrological parameters estimation by using new tools and combining them. In this study, the effect of seasonal coefficients and mathematical methods of signal analysis and signal processing on wavelet transform to improve the performance of the Gene Expression Programming (GEP) model were discussed.
Materials and Methods: In the present study, for the prediction of the monthly flow of Ab Zal River, the information of Pol Zal hydrometric station in period 1972 to 2017 was used. In the next step, different input patterns need to be ready. To this purpose, the data are presented in three different modes: (a) the use of flow data and considering the role of memory up to four delays; (b) the involvement of the periodic term in both linear (?-GEP) and nonlinear (PT-GEP) states, and (c): data analysis using the Haar wavelet, Daubechies 4 (db4), Symlet (sym), Meyer (mey), and Coiflet (coif), was done in two subscales, prepared, and introduced to the GEP model. To better analyze the effect of mathematical functions used in the GEP method, two linear modes (using Boolean functions including addition, multiplication, division, and minus) and nonlinear (including quadratic functions, etc.) were considered. The wavelet transform is a powerful tool in decomposing and reconstructing the original time series. Wavelet function is a type of function that has an oscillating property and can be quickly attenuated to zero. Modeling was done based on 80% of recorded data (432 months) and the validation was done based on the remaining 20% (108 months). To evaluate the performance of each of models, statistical indices such as mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) were used.
Results and Dissection: The results of linear and nonlinear GEP models showed that in both cases, the four-delay model achieved the most accuracy in river flow prediction. Still the performance of nonlinear GEP model according to RMSE (4.093 (m3/s)), MAE (2.782 (m3/s)) and R (0.660) were better than another, respectively. In the next step, the periodic term was added to the model inputs. Based on the results, the PT-GEP model with M4 pattern had the lowest error, the highest accuracy and was able to reduce the RMSE index by 8%. Then, in the third step, the river flow data were divided into approximate subdivisions and details using five wavelet functions. The most appropriate level of analysis based on the number of data was considered as number three. The results of the W-GEP modes showed an excellent performance of this method so that the model was able to reduce the RMSE statistics with 48.6%, 41.2%, and 31.1% compared to the L-GEP, NL-GEP and PT-GEP methods, respectively. Also, the best performance of the W-GEP model with the Symlet wavelet and the decomposition level of one had the highest accuracy (R=0.847) and the lowest error (RMSE =2.898 (m3/s) and MAE =1.745 (m3/s) among all models (35 models) such as linear and nonlinear, seasonal and non-seasonal and wavelet hybrid models.
Conclusion: Based on the results, it can be concluded that the overall use of data preprocessing methods (including seasonal coefficients and wavelet functions) has improved the performance of the GEP model. However, the combination of wavelet functions with the GEP model has significantly increased the accuracy of the modeling. Therefore, it is recommended as the most suitable tool for river flow forecasting.
F. Ahmadi; F. Radmanesh; G. A. Parham; R. Mirabbasi Najaf Abadi
Abstract
Introduction: Hydrological phenomena are often multidimensional and very complex. Hence, the joint modeling of two or more random variables is required to investigate the probabilistic behavior of them. To this aim, the copulas can be efficiently utilized to derive multivariate distributions. In addition, ...
Read More
Introduction: Hydrological phenomena are often multidimensional and very complex. Hence, the joint modeling of two or more random variables is required to investigate the probabilistic behavior of them. To this aim, the copulas can be efficiently utilized to derive multivariate distributions. In addition, the copula functions can quantify the dependence structure between correlated random variables. Estimation of low flow is necessary in different fields of hydrological studies such as water quality management, determination of minimum required flow at downstream for producing electricity and cooling purposes, design of intakes, aquaculture, design of irrigation systems and assessing the effect of long-term droughts on ecosystems. Low flows can be determined based on low flow indices. There are many types of low flow indices which among them the 7-days low flow with different return periods are more popular. Heretofore, numerous studies have been performed in the field of univariate analysis of river low flows, but the low flows of two river branches can be simultaneously analyzed using copula functions. Copula is a flexible approach for constructing joint distribution with different types of marginal distributions. Indeed, the copula is a function which links univariate marginal distributions to construct a bivariate or multivariate distribution function.
Materials and Methods: Hydrological phenomena often have different properties, where for their frequency analysis; they may be examined either individually or concurrently. These variables are not independent, rather they are interconnected and the change in one of them affects the other. Thus, the univariate frequency analysis can bring about some error due to neglecting the interdependence between these random variables. the copula is a function which joint the marginal distribution functions for constructing a bivariate or multivariate function. Development of copula functions is alleged to Sklar (1959) who described how univariate distribution can be jointed to form a multivariate distribution. Generally a copula function is a transfer of a multivariate function from to . This transfer separate marginal distributions from F function and the copula function, C, is only related to dependency among variables, therefore it present a full description of inner dependency structure. In other words, the Sklar’s theorem states that for multivariate distributions, the inner dependency among the variables and univariate marginal distributions is separated and the dependency structure explained by copula function. The copula function divided into many families which among them then the Archimedean copula is widely used in multivariate analysis of hydrological events and also has an explicit formula for its cumulative form which is an important advantage in comparison with elliptical copula functions that have not explicit formula. Application of the copulas can be useful for the accurate multivariate frequency analysis of hydrological phenomena. There are many copula functions and some methods were proposed for estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the copula parameter is an effortful work. In this study, five different copula functions including, Ali - Mikhail – Haq, Clayton, Frank, Gal ambos and Gumbel-Hougaard were used for multivariate analysis of 7-days low flow in Dez basin.
Results and Discussion: In this study, the low flow of the Dez basin at junction of river branches during 1956-2012 were investigated using copula functions. For this purpose, firstly the 7-days low flow series of considered stations were extracted and then the homogeneity of the series was examined using Mann-Kendall test. The results showed that the 7-days low flow series of Dez basin are homogenous. In the next step, 11 different distribution functions were fitted on low flow series and the Logistic distribution was selected as the best fitted marginal distribution for considered stations. After specifying the marginal distributions, the Archimedean and Extreme value families of copula functions were used for multivariate frequency analysis of 7-days low flow. For this study, the best-fitted copula was specified in two ways. For the first specification, the nonparametric empirical copula was computed and compared with the values of the parametric copulas. The parametric copula that was closest to the empirical copula was defined as the most appropriate choice. The second specification was based on the statistical approach. The results indicated that for pair data of Sepid Dasht Sezar and Sepid Dasht Zaz stations, the Gumbel-Hougaard copula had the most accordance with empirical copula. In order to investigate the joint return periods, we used the joint return periods in two cases of AND and OR forms and also conditional joint return period.
Conclusion: Based on the obtained results from joint analysis of the low flow at upstream of the junction of two river branches, it was specified that two river branches of Sepid Dasht Sezar and Sepid Dasht Zaz may experience sever simultaneous drought events every 200 years.
Farshad Ahmadi; Mohammad Nazeri Tahroudi; Rasoul Mirabbasi Najaf Abadi
Abstract
Introduction: Climate change in the current century is an important environmental challenge facing the world. Increase in atmospheric concentration of greenhouse gases such as CO2 as a result of human activities has caused a change in a number of hydroclimatic parameters. Climate change and global warming ...
Read More
Introduction: Climate change in the current century is an important environmental challenge facing the world. Increase in atmospheric concentration of greenhouse gases such as CO2 as a result of human activities has caused a change in a number of hydroclimatic parameters. Climate change and global warming are the most important issues that have attracted many attentions in recent years. Climatic changes have interpreted as significant changes in average weather over a long period (Salari and ghandomkar, 2012). Global warming may cause drastic fluctuations in various processes and also it can significantly affect mean and variance of relative humidity, precipitation, solar radiation and etc. Global warming phenomena can change the components of the hydrological cycle and re-distribute the world's water resources in time and space. This may exacerbate desertification in arid and semi-arid countries such as Iran (Ahmadi and Radmanesh, 2014). Therefore, a large part of hydroclimatic researches has focused on temperature trend analysis at different spatial and temporal scales,
Materials and Methods: In the present study, the long-term temperature data from 24 climatological stations uniformly distributed over the West Azarbayjan province during 1981-2013 were used for investigating the temperature trends. The aim of trend test is to specify whether an increasing or decreasing trend exists in time series. Since parametric tests have some assumptions such as normality, stability, and independence of variables which may not be valid for most hydrologic series, the nonparametric methods are more preferred in meteorological and hydrological studies. In addition, the nonparametric trend analysis methods are less sensitive to extreme values compared to parametric trend tests. Nonparametric tests can also be applied regardless of linearity or nonlinearity of time series trend (Khalili et al. 2015). One of the most well-known nonparametric tests is the Mann–Kendall test (Mann 1945; Kendall 1975). Existence of more than one significant autocorrelation among data is long-term persistence (LTP). The presence of LTP in time series results in the underestimation of serial correlation and overestimation of the significance of the Mann-Kendall test (Koutsoyiannis 2003). In addition, Koutsoyiannis and Montanari (2007) pointed out that the Hurst phenomenon (Hurst 1951) is one of the most major sources of uncertainty in hydrometeorological trend analysis. Hamed (2008) studied the impact of LTP and Hurst phenomenon on the Mann–Kendall test, and Kumar et al. (2009) named it as the MK4. Since the MK3 test (Mann-Kendall method after the removal of the effect of all significant auto-correlation coefficients) is a generalized version of the MK2 (Mann-Kendall method after removing the effect of significant lag-1 auto-correlation), the MK3 and MK4 tests were used in this study and explained briefly in the following sections according to Kumar et al. (2009) and Dinpashoh et al. (2014). In the current study, the MK4 test was employed.
Results and Discussion: In this study, the mean monthly and annual air temperature trends were investigated using non-parametric Mann-Kendall test by considering the Hurst coefficient (MK4) for West Azarbayjan province. The Sen's slope estimator was also used for estimation of the slope of the trend line. Results indicate that 71% of selected stations (17 stations out of 24 considered stations) experienced a significant positive trend and only 7 stations (%29 of studied stations) did not show a significant upward trend in annual temperature time series. The highest increasing temperature rate (0.12 °C/Year) in annual timescale was found in Chehriq station. On monthly time scale, the numbers of months with increasing trends were 6 times greater than those with negative trends. Most of the stations had significant positive trends in mean temperature in February and March, Moreover, according to calculated Sen's slope, the mean air temperature of West Azarbayjan province increased by 0.05 °C/Year (1.65 °C during the study period).
Conclusion: The results show that the temperature of West Azarbayjan province substantially increased. The temperature increment can cause more drought occurrence and crop yield loss. As most of people’s income in this province depends on agricultural activates, temperature rise seems to have led to many social and economic problems in our studied area. Further, drying up of Urmia Lake and decreasing water input to the Urmia Lake basin can intensify the environmental problems.
Mohammad Nazeri Tahrudi; Farshad Ahmadi; Keivan Khalili
Abstract
Introduction: Given the fact that Iran is located in the center of the dryland of earth and is significantly influenced by the deserts of Central Asia and hot dry deserts of Arabia and Africa, is one of the most arid and low rainfall land areas.So is the proper management of water resources is of critical ...
Read More
Introduction: Given the fact that Iran is located in the center of the dryland of earth and is significantly influenced by the deserts of Central Asia and hot dry deserts of Arabia and Africa, is one of the most arid and low rainfall land areas.So is the proper management of water resources is of critical importance. The first step in the proper management of water resources is studying the factors that affected these resources including climate change. In fact climate change is a dynamic process in terms of time and place. Large parts of the Earth's climate as part of their normal variability in short-term and long-term experience. Short-term climate changes due to the difference in terms of average annual values of specific climate variables in average periods such as 30 years. Causes and effects of regional climate change in several parts of the world have been widely studied from various aspects. Among hydrological parameters, precipitation is the most important parameter in the complex hydrologic cycle. Follow the phenomenon of global warming on the Earth's surface, the rainfall pattern has changed.Trends of rainfall in different parts of the world have been studied by many researchers. Due to climate change in Iran and climate change in the Basin of Urmia Lake it seems that evaluation the trend of monthly and annual precipitation and its time of change point in the basin of Urmia Lake changes is important. The goal of this study is evaluatingthe trend and time of the change point trend of monthly and annual precipitation of rain gage stations in Urmia Lake basin.
Material and methods: Lake Urmia is the focus of surplus accumulation of surface currents all the rivers of the basin, with an area of approximately 5750 square kilometers and the average elevation of 1276 m above sea level and is located in the middle of the northern basin. Around of Lake Urmia there are 16 wetlands with an area of 5 to 120 hectares (some have dried up) that mostly have sweet or salty and fresh water and a high value of ecosystems.Urmia Lake Basin is situated in eastern of 44-14 to 47-53 and north of 40-35 to 30-38 coordinates. Urmia Lake Basin rainfall changes is 220 to 900 mm and have mean precipitation about 263 mm that added in central parts of the basin to the highlands.
Trend analysis: The aim of process test is to specify whether an ascending or a descending trend exists in data series. Since parametric tests have some assumptions including normality, stability, and independence of variables, where most of these assumptions do not apply to hydrologic variables, the nonparametric methods are more preferred in meteorological and hydrological studies. The nonparametric methods are less sensitive to extreme values compared to parametric tests in the examination of trends. Nonparametric tests can also be utilized for data time series regardless of linearity or nonlinearity of the trend (Khalili et al. 2014). One of the most well-known nonparametric tests is Mann-Kendall test (Mann 1945; Kendall 1975).
The modified Mann-Kendall test (MMK): The main assumption of Mann-Kendall test is that the sample data has no significant autocorrelation. However, some hydrological series might have a significant autocorrelation coefficient. When a series has a positive autocorrelation coefficient, there is an increased chance for Mann-Kendall test to reveal the existence of a trend in this series. In this case, the null hypothesis i.e. lack of trend is rejected, yet this hypothesis should not actually be. The modified Mann-Kendall test was presented by Hamed and Rao (1998) and has been used by Kumar et al (2009) for the analysis of the trend of Indian rivers. In this method, the effect of all significant autocorrelation coefficients is removed from the time series and is appliesto a series whose autocorrelation coefficients are significant in one or more cases.
Change point test: Pettittest is a non-parametrictest that was developedin 1979byPettit. Themethod is used in order tofind change points ina time series(Salarijazi et al 2012).In this study,thestatisticwas usedtofind asudden change intemperaturedata.Thisstatistic isatest with rank basis and without a distributionin orderto detectsignificantchangesin the mean of the time seriesanditis importantwhenthereis noassumptionabout the change time.
Results and discussion: In this study the trend of monthly and annual precipitation of rain gage stations that located in Urmia Lake basin were investigated using modified Mann-Kendall test. Z values of case study were calculated in two monthly and annual scales. The results of evaluation the trend of precipitation of rain gage stations of Urmia Lake basin showed that in October, December, January, February and March (five months of the year) the trend of precipitation is decreasing and the mean of Z values showed the less than zero values. In April and May there is no sensible changing in precipitation trend. Also the results showed that the March, April and May have a low failure rate and February, December and July have a most of change point of monthly precipitation data. About 60 percentages of the time of change point in precipitation trend are between 1992 and 1998. Also the results showed that two months of May and November there is no changing point in west Urmia Lake rain gage stations. In annual scale the time of changing trend is between 1992 and 1998.
Conclusion: The results of evaluation the trend of Lake Urmia precipitations showed that the Urmia Lake basin has a combination of decreasing and increasing trend in studied time period. The decreasing trend in precipitation often seen in west stations of the basin and west and south-west of Urmia Lake. The increasing trend also seen in south and north-east of Urmia Lake basin. Also the results of zoning the Z values of Mann-Kendall test showed that in annual scale the regions that influenced by polar-continental air mass that they entered Iran have a decreasing trend.
Keyvan Khalili; Mohammad Nazeri Tahrudi; Rasoul Mirabbasi Najaf Abadi; Farshad Ahmadi
Abstract
Introduction: Climate change in the current era is a very important environmental challenge. Our understanding of the impacts of human activities on the environment, especially those related to global warming caused by increased greenhouse gases indicates that, most probably, a number of hydro-climatic ...
Read More
Introduction: Climate change in the current era is a very important environmental challenge. Our understanding of the impacts of human activities on the environment, especially those related to global warming caused by increased greenhouse gases indicates that, most probably, a number of hydro-climatic parameters are changing. Based on the scientific reports, the average temperature of the earth has increased about 0.6 degrees centigrade over the 20th century and it is expected that the amount of evaporation continues to rise. In this case, the atmosphere would be able to transport larger amounts of water vapor, influencing the amount of atmospheric precipitations (21). Low precipitation and its severe fluctuations in the daily, seasonal and annual time scales are the intrinsic characteristics of Iran’s climates. Based on the research background, it seems that no comprehensive study has been conducted on concentration of winter precipitation in Iran. The aim of this study is to calculate the concentration and Trend of precipitation of Iranian border stations over the last half-century.
Materials and Methods: Iran with an area of over16480000 square kilometers is situated in the northern hemisphere and southwest of Asia. Almost all parts of Iran have four seasons. In general, a year can be divided into two warm and cold seasons. In this study, 18 stations were selected among more than 200 synoptic stations existing in the country, for investigating the concentration and precipitation trend.
PCI Index The PCI index has been proposed as an index of precipitation concentration. The seasonal scales of this index are calculated as equation 1(18):
(1)
Where Pi is the amount of monthly precipitation in the ith month. Based on the proposed formula, the minimum value of theoretical PCI is 8.3, indicating absolute uniformity in the precipitation concentration (i.e. the same amount of precipitation occurs every month).
Trend analysis The aim of process test is to specify whether an ascending or a descending trend exists in data series. Since parametric tests have some assumptions including normality, stability, and independence of variables, where most of these assumptions do not apply to hydrologic variables, the nonparametric methods are more preferred in meteorological and hydrological studies.
Results and Discussion: The PCI index was calculated using the monthly precipitation of the selected stations at seasonal and winter time scales over a 50-year period. This period was then divided into two 25-year sub-periods for the investigation of changes in average values of PCI (7). In the first 25-year span, the irregular precipitation distribution has been observed in the Bandarabbas station and its surroundings in winter season. In none of the studied stations, highly irregular precipitation occurred. The highest share of PCI was relatedto the precipitation average distribution class, and the northern, northwestern, and northeastern parts of the country have a uniform precipitation distribution. In winter, within the first 25-year period, the country had ideal conditions in terms of precipitation and its concentration in the mentioned regions. Within the second 25-year period, the intensity of irregular precipitation concentration decreased, as the regions that had confronted strong precipitation irregularities wereadded to regions with uniform concentration. At the seasonal scale and in winter, the country’s share of uniform distribution diminished in the second 25 years, and overall most parts of Iran have been covered by average precipitation distribution. The uniform precipitation distribution in recent years (second 25 years) has decreased in winter in such a way that no uniform distribution has been observed in the northeast of the country and uniform distribution belongedto the Caspian sea border strip, southern regions of west and east Azerbaijan stations (Urmia, Khoy and Tabriz stations) along with Kermanshah, Sanandaj, and Zanjan stations.
Trend analysis of the PCI In winter the Abadan, Ahwaz, Bandarabbas, Birjand, Kermanshah, Sanandaj, Urmia and Zahedan stations experienced an insignificant decreasing trend in PCI. At other stations, an insignificant increasing trend was observed in the PCI series. Overall, 9 out of 18 considered stations, witnessed increasing PCI trend implying increased irregularities in winter precipitation.
The results of Mann-Kendall trend test for precipitation Based on the results it can be observed that in winter Ahwaz, Gorgan, Khoramabad, Kermanshah, Ramsar, Rasht and Sanandaj experienced an insignificant decreasing trend in precipitation. In Khoy, Sanandaj, Tabriz, Urmia, Zahedan, and Zanjan stations, the decreasing precipitation trend in winter was significant. Overall, 12 out of 18 studied stations have been afflicted with a decreasing precipitation trend in winter.
Conclusion: Precipitation Concentration Index (PCI) is an index for determining the precipitation variations in a certain region and PCI analysis can reveal the accessibility to water in an environment. In this study, the PCI was used to analyze the precipitation concentration at two annual and seasonal time scales throughout the Iran (from 1961 to 2010). The PCI zoning results at the seasonal scale demonstrated that precipitation concentration had the same trend within the two 25-year sub-periods. These results also revealed a high PCI in provinces with low precipitation such as Zahedan. These stations, according to Oliver (18) classification, have irregular and sporadic precipitation duringwinter. Overall, the PCI analysis at the seasonal scale indicated that the regions covered by polar-continental, Europe-originated polar-continental and North Atlantic ocean-originated polar-continental have the best precipitation concentration throughout the country. The results of this index provided valuable information for water resources managers in regions with low-precipitation, consistent with research by Gozzini et al (7). The results of modified Mann-Kendall (MMK) test for PCI in Iran revealed a decreasing trend over the last 50 years. Based on the obtained results in winter, the Khoy, Sanandaj, Tabriz, Urmia, Zahedan, and Zanjan stations experienced a significant decreasing trend. The existence of an increasing trend in PCI albeit insignificant reveals changes in Iran's winter precipitations confirmed by Mann-Kendall test for precipitations in 18 studied stations. Overall, it can be concluded that the decreasing trend in Iran's winter precipitation has resulted in increasing PCI and thereby increased irregularities in winter precipitations, especially in winter season.
Mohammad Nazeri Tahrudi; Keivan Khalili; Farshad Ahmadi
Abstract
Introduction: Climate change has been one the most important subject in studies in the recent decades. Precipitation is an effective climatic parameter in the municipal and rural studies and in the industry, architecture, agriculture, climate and other fields. Trend analysis of average monthly and yearly ...
Read More
Introduction: Climate change has been one the most important subject in studies in the recent decades. Precipitation is an effective climatic parameter in the municipal and rural studies and in the industry, architecture, agriculture, climate and other fields. Trend analysis of average monthly and yearly rainfall investigated in many studies, but less researches probe regional rainfall analysis. In this study average yearly precipitation data measured at 31 synoptic stations of Iran in the period of 1961 to 2010 used to study regional variations of precipitation. In this order station divided to five regions by fuzzy clustering. Then, using the regional Kendall method, trend of precipitation investigated at five regions and all of Iran.
Materials and Methods: Iran with an area of over 16480000 square kilometers is situated in the northern hemisphere and southwest of Asia. Almost all parts of Iran have four seasons. In general, a year can be divided into two warm and cold seasons. Iran with range annual precipitation of 62.1-344.8 mm is located between two meridians of eastern 44° and 64° and two orbits of northern 40° and 25°. In order to investigate trend of precipitation two Mann-Kendall and Regional Kendall tests used. Also to evaluate the regional trends the Fuzzy method applied to clustering the studied region. The classic form of Mann-Kendall test has been used in many studies. The null hypothesis (no trends) is accepted when , otherwise H0 is rejected and its opposite hypothesis, i.e. the existence of a trend is accepted (5, 13). To estimate regional trend, the mean S statistic of Regional Mann-Kendall introduced that was presented by Douglas et al (7). Fuzzy Clustering: Clustering the studied area was done using the Fuzzy clustering method. One of the first clustering methods that were based on the objective function and Euclidean distance was presented by Dunn in 1974 and then was generalized by Bezdak in 1981.The FCM clustering algorithm is modified type of K-Means clustering algorithm. This algorithm minimizes the variance of clusters (1). The assumption of this algorithm is that data are in a vector space and the objective of this algorithm is to minimize the sum of variance in the D v cluster.
Results and Discussion: In this section the results of decreasing and increasing trend of annual precipitation of Iran can be observed in order to the data that recorded at provinces synoptic stations in the 1 and 5 percentage significance levels. Isfahan Synoptic station detected an increasing trend insignificant level of 5 percentages and the East Azerbaijan synoptic station followed a significant and severe decreasing trends. In order to investigate regional trend it is needed to use the clustering methods. After investigation the trend of mean annual precipitation at each station, the studied area was clustered using the Fuzzy clustering method and then the regional trend of Iran’s precipitation was evaluated. At first the number of different clusters investigated using the geographic properties and mean annual precipitation of the studied area and then with attention to the correlation of precipitation series in each cluster, five clusters selected to investigate the regional trend of precipitation. Overall the results showed that about 67 percentages of synoptic stations in center of provinces detected decreasing trend in the recent half century. Increasing the precipitation almost accrued in the center and northern part of Iran and other areas detected a decreasing precipitation trend in the studied data period that this subject is corresponded with Azerakhshi and et al (2). The observed trends over Iran and almost all stations and provinces were downward trend. This decreasing trend of precipitation also observed in Iran in the two past decades by Khalili et al (13).
Conclusion: Result showed decreasing trend in the west, north of Iran at each station and regional scale. Results indicated also a significant downward trend at northwest, central and south-west of the country, non-significant downward trend in western of Iran and non-significant upward trends in northern regions and Caspian Sea margins in the regional analysis. The most decreasing trend of precipitation observed at the north west of Iran because of increasing temperature and climate changes in the recent years.
F. Ahmadi; S. Ayashm; K. Khalili; J. Behmanesh
Abstract
Introduction Crop evapotranspiration modeling process mainly performs with empirical methods, aerodynamic and energy balance. In these methods, the evapotranspiration is calculated based on the average values of meteorological parameters at different time steps. The linear models didn’t have a good ...
Read More
Introduction Crop evapotranspiration modeling process mainly performs with empirical methods, aerodynamic and energy balance. In these methods, the evapotranspiration is calculated based on the average values of meteorological parameters at different time steps. The linear models didn’t have a good performance in this field due to high variability of evapotranspiration and the researchers have turned to the use of nonlinear and intelligent models. For accurate estimation of this hydrologic variable, it should be spending much time and money to measure many data (19).
Materials and Methods Recently the new hybrid methods have been developed by combining some of methods such as artificial neural networks, fuzzy logic and evolutionary computation, that called Soft Computing and Intelligent Systems. These soft techniques are used in various fields of engineering.
A fuzzy neurosis is a hybrid system that incorporates the decision ability of fuzzy logic with the computational ability of neural network, which provides a high capability for modeling and estimating. Basically, the Fuzzy part is used to classify the input data set and determines the degree of membership (that each number can be laying between 0 and 1) and decisions for the next activity made based on a set of rules and move to the next stage. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) includes some parts of a typical fuzzy expert system which the calculations at each step is performed by the hidden layer neurons and the learning ability of the neural network has been created to increase the system information (9).
SVM is a one of supervised learning methods which used for classification and regression affairs. This method was developed by Vapink (15) based on statistical learning theory. The SVM is a method for binary classification in an arbitrary characteristic space, so it is suitable for prediction problems (12).
The SVM is originally a two-class Classifier that separates the classes by a linear boundary. In this method, the nearest samples to the decision boundary called support vectors. These vectors define the equation of the decision boundary. The classic intelligent simulation algorithms such as artificial neural network usually minimize the absolute error or sum of square errors of the training data, but the SVM models, used the structural error minimization principle (5).
Results Discussion Based on the results of performance evaluations, and RMSE and R criteria, both of the SVM and ANFIS models had a high accuracy in predicting the reference evapotranspiration of North West of Iran. From the results of Tables 6 and 8, it can be concluded that both of the models had similar performance and they can present high accuracy in modeling with different inputs. As the ANFIS model for achieving the maximum accuracy used the maximum, minimum and average temperature, sunshine (M8) and wind speed. But the SVM model in Urmia and Sanandaj stations with M8 pattern and in other stations with M9 pattern achieves the maximum performance. In all of the stations (apart from Sanandaj station) the SVM model had a high accuracy and less error than the ANFIS model but, this difference is not remarkable and the SVM model used more input parameters (than the ANFIS model) for predicting the evapotranspiration.
Conclusion In this research, in order to predict monthly reference evapotranspiration two ANFIS and SVM models employed using collected data at the six synoptic stations in the period of 38 years (1973-2010) located in the north-west of Iran. At first monthly evapotranspiration of a reference crop estimated by FAO-Penman- Monteith method for selected stations as the output of SVM and ANFIS models. Then a regression equation between effective meteorological parameters on evapotranspiration fitted and different input patterns for model determined. Results showed Relative humidity as the less effective parameter deleted from an input of the model. Also in this paper to investigate the effect of memory on predict of evapotranspiration, one, two, three and four months lag used as the input of model. Results showed both models estimated monthly evapotranspiration with the high accuracy but SVM model was better than ANFIS model. Also using the memory of evapotranspiration time series as the input of model instead of meteorological parameters showed less accuracy.
F. Ahmadi; F. Radmanesh; Rasoul Mirabbasi
Abstract
Accurate estimation of river flow can have a significant importance in water resources management. In this study, Genetic programming (GP) and Support Vector Machine (SVM) methods were used to forecast daily discharge of Barandoozchay River. The daily discharge data of Barandoozchay River measured at ...
Read More
Accurate estimation of river flow can have a significant importance in water resources management. In this study, Genetic programming (GP) and Support Vector Machine (SVM) methods were used to forecast daily discharge of Barandoozchay River. The daily discharge data of Barandoozchay River measured at the Dizaj hydrometric station during 2007 to 2011 was used for modeling, which 80% of the data used for training and remaining 20% used for testing of models. The results showed that in the both of considered methods, the models including discharges of one, two and three days ago had higher accuracy in verification step and the accuracy of models decreased with increasing discharge values. Comparing the performance of GP and SVM methods indicated that, however the accuracy of the GP method with the R=0.978 and RMSE=1.66 (m3/s) was slightly more than SVM method with R=0.976 and RMSE=1.80 (m3/s), but the SVM is easier than GP method. Thus, the SVM method can be used as an alternative method in forecasting daily river discharge.
R. Zamani; F. Ahmadi; F. Radmanesh
Abstract
Today, the daily flow forecasting of rivers is an important issue in hydrology and water resources and thus can be used the results of daily river flow modeling in water resources management, droughts and floods monitoring. In this study, due to the importance of this issue, using nonlinear time series ...
Read More
Today, the daily flow forecasting of rivers is an important issue in hydrology and water resources and thus can be used the results of daily river flow modeling in water resources management, droughts and floods monitoring. In this study, due to the importance of this issue, using nonlinear time series models and artificial intelligence (Artificial Neural Network and Gen Expression Programming), the daily flow modeling has been at the time interval (1981-2012) in the Armand hydrometric station on the Karun River. Armand station upstream basin is one of the most basins in the North Karun basin and includes four sub basins (Vanak, Middle Karun, Beheshtabad and Kohrang).The results of this study shown that artificial intelligence models have superior than nonlinear time series in flow daily simulation in the Karun River. As well as, modeling and comparison of artificial intelligence models showed that the Gen Expression Programming have evaluation criteria better than artificial neural network.
F. Ahmadi; F. Radmanesh
Abstract
The temperature is one of the essential elements in formation of climate and its changes can alter the climate of each region, Therefore study of temperature changes at different spatial and temporal scales is devoted a large part of research to climatology. The mean temperature changes of the northern ...
Read More
The temperature is one of the essential elements in formation of climate and its changes can alter the climate of each region, Therefore study of temperature changes at different spatial and temporal scales is devoted a large part of research to climatology. The mean temperature changes of the northern half area of Iran (18 Synoptic stations) in monthly or annual scales (1961-2010) are tested with using non-parametric Mann-Kendall test and elimination of all auto-correlation coefficients. To determine the slope of temperature gradient, the Sen’s slope estimation method was used. The results showed that 61% of the stations have experienced a significant increase in annual scale, in expect of Urmia, Zanjan, Qazvin and Gorgan stations. Arak is also a significant decrease, Torbate Heydarie and Saghez have experienced non-significant negative trend in annual scale. In monthly scale, number of months with increasing trend was greater than decreasing trend. April, September and October have significant increasing trend in most stations. December has lowest changing in compare with others. In conclusion, the studied temperature area in past half century 1.15 C is increased
A. Fakheri Fard; yaghoub dinpazhoh; F. Ahmadi; J. Behmanesh
Abstract
One of the applicable ways for simulation and forecasting hydrological processes is time series modeling. An important problem in forecasting hydrological data using time series is generating stochastic data. Any changes in stochastic series will change generating data. In this study nonlinear ARCH model ...
Read More
One of the applicable ways for simulation and forecasting hydrological processes is time series modeling. An important problem in forecasting hydrological data using time series is generating stochastic data. Any changes in stochastic series will change generating data. In this study nonlinear ARCH model presented in order to modeling and generating stochastic component of time series. After combing ARCH model with nonlinear bilinear model, BL-ARCH model suggested to forecasting river flow discharge. Daily river flow of Shahar-Chai River located in the west of Urmia Lake and West Azarbaijan province have been used for data analysis and 11 years forecasting. As results shown suggested model with 4.52 error has better than bilinear model with 6.77 error. So this model can be used for short-time river flow forecasting specially daily series.