کیومرث روشنگر؛ محمد تقی اعلمی؛ فاطمه وجودی مهربانی
چکیده
تخمین درست میزان رسوبات حمل شده توسط رودخانهها در پروژه های منابع آبی از اهمیت بالایی برخوردار است. بطور کلی پدیده فرسایش و انتقال رسوب از پیچیده ترین مسائل هیدرودینامیکی است که تعیین دقیق معادلات حاکم بر آن بدلیل تاثیرات پارامترهای مختلف، به آسانی میسر نیست. با وجود انجام تحقیقات بسیاری در زمینه کاربرد مدلهای هوشمند نظیر شبکه ...
بیشتر
تخمین درست میزان رسوبات حمل شده توسط رودخانهها در پروژه های منابع آبی از اهمیت بالایی برخوردار است. بطور کلی پدیده فرسایش و انتقال رسوب از پیچیده ترین مسائل هیدرودینامیکی است که تعیین دقیق معادلات حاکم بر آن بدلیل تاثیرات پارامترهای مختلف، به آسانی میسر نیست. با وجود انجام تحقیقات بسیاری در زمینه کاربرد مدلهای هوشمند نظیر شبکه های عصبی و برتری این مدلها نسبت به روابط ریاضی و تجربی موجود نظیر منحنی سنجه رسوب، بدلیل غیر صریح بودن و پیچیدگی حاکم بر انتخاب و معماری شبکه مناسب، کاربرد این مدلها توسعه کمتری نسبت به روشهای صریحی نظیر برنامه ریزی ژنتیک داشته است. در این پژوهش، بمنظور توانمند سازی پیش بینی صریح بار رسوبی رودخانه قطورچای از یک سو الگوریتمهای تکاملی نظیر برنامه ریزی ژنتیک (GP) و الگوریتم ژنتیک (GA) به کار گرفته شده و از سوی دیگر از مدلهای نیمه تجربی تعیین بار کل رسوب و منحنی سنجه استفاده گردیده است. مقایسه و تجزیه تحلیل نتایج حاصل از روشهای کلاسیک، منحنی سنجه بهینه و روش برنامه ریزی ژنتیک، کارائی بسیار بالای الگوریتمهای تکاملی را (907/0=DC و 067/0=RMSE) بعنوان ابزاری قدرتمند در بهینه سازی و پیش بینی صریح بار رسوبی کل رودخانه نشان می دهد.