Soil science
Mansour Mirzaei Varouei; Sh. Oustan; A. Reyhanitabar; N. Najafi
Abstract
Introduction
Savory is considered one of the most important medicinal plants, which is used in various food and medical industries. Nitrogen (N) plays a major role on the growth and yield of medicinal plants. Therefore, an adequate supply of N is required for successful production of savory. However, ...
Read More
Introduction
Savory is considered one of the most important medicinal plants, which is used in various food and medical industries. Nitrogen (N) plays a major role on the growth and yield of medicinal plants. Therefore, an adequate supply of N is required for successful production of savory. However, the application of chemical N fertilizers is associated with many obstacles such as groundwater pollution, N enrichment of surface waters, and drop in the quality of plants. Accordingly, nowadays, great attention has been paid to organic fertilizers. In this regard, humic acid-based fertilizers have shown promising results. Humic acids (HAs) could be converted into nitrohumic acids (NHAs) through the nitration process, in which nitro groups (NO2) are located on the aromatic rings. This process increases the N content of the HA. Thus, NHAs can be used as organic N fertilizers in the cultivation of medicinal plants whose organic production is a priority. However, the effects of these types of fertilizers on plant growth and physiological characteristics have not been well understood. Accordingly, the present study for the first time investigates the effectiveness of NHA on the morphological and physiological characteristics of savory, as well as N loss through leaching.
Materials and Methods
In the current study, HA was initially extracted from leonardite (purchased from Yazd Golsang Kavir Company) as a rich source of HA. Then, NHA was prepared through the nitration process using nitric acid (50% by volume). After that, using FT-IR (Fourier transform infrared spectroscopy) and CHNS analysis the extracted HA and NHA were characterized, and their N content was determined. Afterward a greenhouse experiment in a completely randomized design (CRD) with three replications was conducted to determine the effects of 16 treatments, including control (without urea, HA and NHA), urea (U1, U2 and U3), humic acid (HA1, HA2 and HA3), nitrohumic acid (NHA1, NHA2 and NHA3), urea-humic acid (U1HA1, U2HA2 and U3HA3), and urea-nitrohumic acid (U1NHA1, U2NHA2 and U3NHA3) on the morphological and physiological characteristics of savory plant. The treatment levels were determined as 40, 80, and 120 mg N kg-1 for the first, second and third level of the treatments, respectively. In the combined treatments of urea and HA or NHA, an equal fraction of the total nitrogen (N) was applied. At the end of the experiment, standard methods were used to assess various characteristics, including root length, leaf area, plant height, root volume, wet and dry weights of shoot and root, leaf chlorophyll index, concentrations of phosphorus, potassium, nitrogen, nitrate, and nitrate reductase in both the shoot and root. Additionally, leaching was conducted on specific days during the experiment, and the leachate was collected for nitrate measurement.
Results and Discussion
The results showed that using the nitration process, some characteristics of the NHA such as total acidity, the content of carboxylic and phenolic groups as well as N content improved as compared to the initial HA. Moreover, the results indicated that most of the morphological and physiological traits of savory plants, including leaf area, plant height, root length, fresh and dry weights of root and shoot as well as chlorophyll index, and the concentration of nitrogen, phosphorous, potassium, nitrate and nitrate reductase enzyme were significantly higher in the NHA treatments than those of HA. In addition, the highest shoot dry weight was obtained in the combined treatments of U3NHA3 and U3HA3 as well as in the U3 treatment alone. The average rate of nitrate concentration increase in the U treatments was 1.77 times higher than the UNHA treatments. According to the results, U3 treatment indicated the highest nitrate loss which by using the U3NHA3 treatment, the mean concentration of nitrate in the leachate decreased by about 40.5% as compared to the U3 treatment.
Conclusion
The findings of this research revealed that most of the morphological and physiological traits of savory plant showed better responses to the combined treatments of U3NHA3 and U3HA3 as well as to the U3 treatment alone. However, with regard to the lower accumulation of nitrate in the shoot of savory as well as to the lower nitrate leaching, the combined treatments were preferred. Accordingly, NHA can be a alternative nitrogen source in increasing the yield and growth indicators of savory. However, the reasons behind the fact of the better performance of combined nitrogen treatments than the individual ones require more research in the future.
H. Bagheri; H. Zare Abyaneh; azizallah izady
Abstract
Introduction: Vermicompost is a type of biological organic fertilizer obtained from earthworm activity. Vermicompost is used in sustainable agriculture due to its beneficial effects on diversity of plant nutrients and physical-hydraulic modification of soil. However, high presence of solutes ...
Read More
Introduction: Vermicompost is a type of biological organic fertilizer obtained from earthworm activity. Vermicompost is used in sustainable agriculture due to its beneficial effects on diversity of plant nutrients and physical-hydraulic modification of soil. However, high presence of solutes in the structure of vermicompost causes soil salinity, increases soil sodium content and changes soil pH. Soil flushing is one of the well known strategies to minimize the mentioned disadvantages of vermicomposting. Although flushing can reduce the soil salinity and sodium content, it leads to transportation of some soil substances such as nitrate, dissolved organic carbon and colloids which their tracing is necessary because of soil quality monitoring and possibility of water resources pollution. The objective of the current study was to investigate the effects of vermicomposting on soil chemical, physical and hydraulic properties and its role on the amount of soil total dissolved salts (TDS), sodium, nitrate, dissolved organic carbon and leaching behavior of colloids.
Materials and Methods: To treat the soil, 1.45 weight percent of vermicompost (17.68 tones/hectare) was mixed with regular soil. Physical, chemical and hydraulic properties of soil were determined. PVC columns with length of 20 cm and internal diameter of 5.95 cm were used and filled with soil to perform leaching during 24 hrs in saturated condition experiment. The effluent of columns were collected at various interval times, and their sodium, nitrate, dissolved organic carbon, TDS and colloid contents were measured and the cumulative amounts of them were calculated at 6 and 24 hrs. All experiments were carried out in three replications, and the mean comparison of leaching parameters was done according to Duncan's multiple range test at probability level of 5%.
Results: Vermicompost increased the studied soil chemical properties i.e, organic matter, organic carbon, extractable nitrate, soluble sodium, soluble and exchangeable sodium, EC and TDS to 12.42, 12.9, 118.96, 80.43, 44.48, 109.4 and 109.4 %, respectively and decreased soil pH to 2.35 %. Soil bulk density reduction to 3.81 % and enhancement of soil porosity, saturated hydraulic conductivity and the pore water velocity to 1.38, 7.25 and 5.6 %, respectively are the other results of vermicompost application. The used vermicompost fertilizer caused displacement of soil water retention curve to more moisture around of saturated and permanent wilting points and reduction of air entry potential. In this regard, vermicomposting increased all of soil hydraulic coefficients of van Genuchten model including θr, θs, α and n, and its effect was specially more on θr and α. The result of leaching experiments showed that the amounts of leached TDS, sodium, nitrate, dissolved organic carbon and colloid in vermicompost-containing soil during 6 hrs were 491.4, 65.22, 116.71, 47.68 and 24.86, and during 24 hrs were 946.3, 72.16, 146.26, 95.11 and 41.97 mg/Kg, respectively. For the natural soil, these amounts during 6 hrs were 240.9, 11.84, 20.08, 23.2 and 15.11, and during 24 hrs were 665.6, 15.69, 44.48, 58.34 and 29.39 mg/Kg, respectively. Therefore, vermicompost significantly increased the amounts of leached TDS, sodium, nitrate, dissolved organic carbon and colloid, because of containing more contents of solute, sodium, nitrate and organic matter in its structure. It also increased the porosity and hydraulic conductivity of soil, and made changes in soil water retention curve (P<0.05). The presence of more sodium in vermicompost together with its effect on soil porosity enhancement increased the colloid dispersion and consequently its leaching. In addition, the leaching rate of all of parameters at 24 hrs in comparison to 6 hrs decreased significantly due to high amount of solute leaching through mass flow at initial time of leaching experiment and leaching residual solute by time-consuming process of diffusion.
Conclusion: Although vermicompost can enriched the soil due to increasing nitrate and organic matter contents, it leads to soil salinity and increases sodium contents. Flushing the soil treated by vermicompost removed the amounts of TDS, sodium, nitrate to 10.4, 76.2 and 44.6 % during 24 hrs. Therefore, leaching had a considerable effect on soil sodium reduction and a little effect on soil salinity reduction. Moreover, in comparison to chemical fertilizers, the high nitrate fraction of applied vermicompost resulted in sustainability of soil fertility. It is expected soil salinity and nitrate leaching fraction of vermicompost will be reduce by managing leaching methods, treating vermicompost before using and reducing fertilizer application rate. Thus, the results of current study warn the farmers who used vermicompost in soil to control the soil salinity, ground water pollution and vertical colloid migration.
Y. Abbasi; A. Liaghat; F. Abbasi
Abstract
Suitable management of water and fertilizer is one of the important factors, affecting water and fertilizer efficiency and environmental pollution. In this study, nitrate deep leaching was evaluated in a furrow irrigated experimental field in Karaj. Experiments were conducted in randomized complete blocks ...
Read More
Suitable management of water and fertilizer is one of the important factors, affecting water and fertilizer efficiency and environmental pollution. In this study, nitrate deep leaching was evaluated in a furrow irrigated experimental field in Karaj. Experiments were conducted in randomized complete blocks in free-drainage furrows having 162 m length in 12 experimental blocks. The first factor consisted of 60%, 80% 100% and 120% of required irrigation water and the second factor 60%, 80% and 100% of nitrate fertilizer requirement applied by fertigation method. Nitrogen requirement was determined based on soil analysis and applied in four stages of the crop growth: before cultivation, in seven leaves, shooting and earring stages in which the first part (before cultivation) was applied by manual distribution and other three parts by fertigation. To determine soil nitrate concentrations, soil samples were taken from depths 20, 40, 60, and 80 cm in all of treatments. After air-drying, soil samples were passed through 2 mm sieve. Then, nitrate concentration of samples were analyzed by spectra photometer. Nitrate losses through runoff were measured by sampling of outlet water. Accumulated nitrate in maize was determined by randomized sampling of plants in all treatments. Finally, to determine nitrate leaching, nitrate mass balance was made. Results showed that 120% water level treatment provided 12% water deep percolation from root zone, while 60% water level treatment resulted in 4.5% water deep percolation. Both water and fertilizer levels had pronounced effect on nitrate leaching. The highest nitrate leaching occurred in 100% fertilizer level treatment decreasing by water reduction level. In some cases such as 80% fertilizer level, water level of 60% and 80% didn’t have any effect on nitrate deep percolation. Therefore, water level selection in this situation depends on other factors such as yield. Considering maize as a plant with root depth to be about 80 cm, water and nitrate deep percolation was evaluated up to 80 cm soil depth for all treatments. 60% and 80% water levels did not provide nitrate leaching below the mentioned root zone depth.