Irrigation
M.R. Emdad; A. Tafteh; N.A. Ebrahimipak
Abstract
Introduction
Quinoa (Chenopodium quinoa) is native plant in Bolivia, Chile and Peru, which is widely adapted to different climatic conditions and can grow in all soils. This plant has shown adequate adaptation to arid and semi-arid areas conditions and is planted from areas with low elevation ...
Read More
Introduction
Quinoa (Chenopodium quinoa) is native plant in Bolivia, Chile and Peru, which is widely adapted to different climatic conditions and can grow in all soils. This plant has shown adequate adaptation to arid and semi-arid areas conditions and is planted from areas with low elevation (sea level) to areas with an altitude of 4000 meters above sea level. Quinoa is often cultivated in areas with limited water resources, and it is rare to find quinoa cultivation under full irrigation conditions. Some studies have shown that quinoa yields slightly better under full irrigation (without water restriction) than quinoa under deficit irrigation. Crop growth models are very important tools in the study of agricultural systems and they can be used to simulate the yield of crop in different conditions. Given that the study of performance limiting factors requires numerous and costly research and experiments in different areas, so finding a way to reduce the number, time and cost of these experiments is worthwhile. Aquacrop model is one of the applied models that are used to simulate yield variations in different water and soil management.
Materials and Methods
This investigation was carried out in two growing seasons of 2019 and 2020 to determine the efficiency of Aquacrop model for simulating Quinoa grain yield and biomass under imposing three stress treatments of 30, 50 and 70% of water consumption in development and mid-growth stages. Plant spacing was 40 cm between rows and 7 cm between plants within rows. Seeds of quinoa (Titicaca cultivar) were cultivated in the first decade of August 2019 and in the third decade of July 2020. The experiment was a randomized complete block design with three replications. Three deficit irrigation treatments including 30, 50 and 70% of available water were considered in two growth stages (development and mid-growth) in 18 experimental plots (3 × 4 m). Soil moisture in rooting depth (about 40 cm) was measured by TDR and after the soil moisture of the treatments reached the desired values, plots were irrigated until the soil moisture reached the field capacity. The results of grain and biomass yield in the first year were used to calibrate the Aquacrop model and the results of the second year were used to validate the model. Root mean square error (RMSE), normalized root mean square error (NRMSE), Willmott index (D), model efficiency (EF) and mean error deviation (MBE) were used to compare the simulated and observed values.
Results and Discussion
The results of the first and second year were used to calibrate and validate the model, respectively. The results of the first year showed that irrigation with 50 and 70% of available water in the development stage reduced quinoa grain yield by 17 and 33%, respectively, compared to the control treatment. The application of these two deficit irrigation treatments in the middle stage reduced the yield by about 12 and 28%, respectively. The results of comparing the statistical indices of grain yield, biomass and water use efficiency showed that the NRMSE for grain, biomass and water use efficiency were 9, 8 and 14% in the first year and 9, 6 and 9% in the second years. Furthermore, the EF for these traits were 0.81, 0.77 and 0.64 in the first year and 0.68, 0.71 and 0.62, in the second year, respectively.
Conclusion
The results of calibration and validation of the model showed the accuracy and efficiency of the Aquacrop model in simulating grain yield, biomass and water use efficiency of quinoa. This model can be used to provide the most appropriate scenario and irrigation management for different levels of deficit irrigation managements.
B. Karimi; N. Karimi
Abstract
Introduction: Among irrigation methods, a drip irrigation system (surface and subsurface) is more acceptable in arid and semi-arid regions due to high water use efficiency and potential crop yield. Pulse drip irrigation (with suitable management practices) is one of the drip irrigation methods (includes ...
Read More
Introduction: Among irrigation methods, a drip irrigation system (surface and subsurface) is more acceptable in arid and semi-arid regions due to high water use efficiency and potential crop yield. Pulse drip irrigation (with suitable management practices) is one of the drip irrigation methods (includes a set of cycles, each cycle consisting of the irrigation phase and a resting phase) that have high potential to improve the uniformity of soil moisture distribution. Suitable design and management of pulse or/and continuous drip irrigation systems substantially require a proper understanding of the moisture distribution pattern around the emitter. One of the critical parameters concerning the moisture distribution pattern, taking into account the wetted area of emitter. Important parameters of the wetted area include the down wetted area (Ad) for the surface and subsurface drip irrigation system as well as the up wetted area of an emitter (Aup) for the subsurface drip irrigation. Modeling the wetted area pattern and considering this parameter in design as one of the criteria for increasing water efficiency in surface and subsurface drip irrigation systems is critical and important.
Materials and Methods: In this research, experiments were carried out in a transparent rectangular cube with dimensions of (3 * 1 * 0.5 m) using three different soil textures (fine, heavy, and medium). The drippers were installed at three different soil depths (surface, 15cm, and 30cm). The emitter discharge was considered 2.4, 4, and 6 lit/hr. Also, these experiments were carried out for two continuous and pulse irrigation systems. In pulse irrigation, the pulse cycles were considered 30-30, 20-40, and 40-20 min. The first number refers to the irrigation time, and the second number refers to the resting time of the system in each cycle. In this research, using a nonlinear regression model, empirical models were developed to predict the wetted area of the moisture front. The input parameters of the suggested model include emitter discharge, saturated hydraulic conductivity, application time, soil bulk density, emitter installation depth, initial soil moisture content, pulse ratio (the ratio of irrigation time to complete period of each cycle) and the proportions of sand, silt and clay in the soil.
Results and Discussion: The results of this study show that the highest and the lowest down wetted area (for surface and subsurface drip irrigation systems) are related to sandy and clay soils, respectively. Also, the highest up wetted area in the subsurface irrigation system is related to loamy and clay soils. The results of the comparison between measured and simulated values of down and up wetted area indicated that these models have acceptable precision and accuracy in estimating the wetted area of the wetting front in surface and subsurface drip irrigation (with pulsed and continuous application). The comparison between the measured and simulated down wetted area of the emitter (for surface drip irrigation with pulsed application) showed that the R2, MAE and RMSE values varied between 0.98-0.99, 0.0027-0.0065 m2 and 0.0034-0.0082 m2, respectively. Concerning statistical values, it is evident that these models have excellent performance in estimation of down and up wetted area for subsurface drip irrigation. For subsurface drip irrigation with the pulsed application, the values of R2, MAE and RMSE for the down wetted area of emitter, ranged 0.91-0.99, 0.002-0.0077 and 0.0032-0.0098, respectively. These models also estimate up wetted areas with less error, and the values of R2, MAE, and RMSE for all treatments varied between 0.89-0.99, 0.0015-0.0067 m2, and 0.0019-0.0077 m2, respectively.
Conclusion: This paper was aimed at presenting relationships for estimating the up and down wetted area of emitter for surface and subsurface drip irrigation (with pulsed and continuous application). Regarding the importance and applicability of empirical models, in this research, nonlinear regression models (NLR, which are more widely used among researchers) were applied. For NLR method, different ten input variables (i.e., emitter discharge, saturated hydraulic conductivity, application time, soil bulk density, emitter installation depth, initial soil moisture content, pulse ratio (the ratio of irrigation time to complete period of each cycle) and the percentage of sand, silt and clay) were considered. The results of this study indicate that the NLR model can estimate the up and down wetted area, and the statistical indices values are within acceptable ranges. Considering these relations in designing surface and subsurface drip irrigation systems can improve the performance of these systems.
T. Raeisinejad; N. Yazdanpanah
Abstract
Introduction: Water has been known as an important limiting factor for plant growth and agricultural yields in arid and semi-arid regions. It is a significant input to agricultural production and also an essential requirement for domestic, industrial and municipal activities. Increasing population and ...
Read More
Introduction: Water has been known as an important limiting factor for plant growth and agricultural yields in arid and semi-arid regions. It is a significant input to agricultural production and also an essential requirement for domestic, industrial and municipal activities. Increasing population and standards of living are contributing to a steep rise in demand for fresh water. By using proper irrigation management practices in farmlands, it is possible to utilize water, soil and fertilizer to produce high yield and quality products. Drip irrigation is considered as one of the most efficient irrigation methods. One of its major advantages is the ability to apply water to the soil as often as desired and in smaller quantity than the other irrigation methods. Two systems of drip irrigation including surface and subsurface drip irrigation methods have been widely used in arid and semiarid regions to reduce the water deficiency impact. Subsurface drip irrigation has been used for many years because of its effectiveness in reducing soil surface evaporation. It has been widely used in horticultural crops under both greenhouse and outdoor field conditions. However, the surface drip irrigation system can be used easier than the subsurface drip irrigation system. In addition, deficit irrigation is one of the strategies for efficient use of water and increasing water use efficiency in agricultural district. Deficit irrigation is a suitable solution to gain acceptable and economic performance by using minimum amount of water. The aim of this study was to evaluate the yield and yield components of sunflower affected by different levels of soil matric potential in combination with two contrasting drip irrigation method i.e. surface and subsurface. In addition, water use efficiency as an important criterion of yield was used to achieve the best and more suitable irrigation method under water scarcity conditions.
Materials and Methods: In order to investigate the irrigation management of sunflower, a field experiment was carried out during 2016 growing season at an experimental farm in Jiroft city. The treatments were laid out in split strip plots based on randomized complete block design with three replications. The treatments were comprised of three soil matric potentials of 40, 55, and 70 centibar for initiation of irrigation in the main plot and sub plots consisted of two drip irrigation systems (surface and subsurface). In the surface systems, drip lines were placed on the soil surface at a distance of 15 cm from the plant and in the subsurface systems, drip lines were placed at a depth of 30 cm. The irrigation time was determined based on the readings of metal tensiometers. These tensiometers were installed in three depths of 15, 30 and 50 cm of soil and at a distance of 20 cm from the plant. In this regard, in both irrigation systems, the mounted tensiometer at a depth of 15 cm of soil was used in the early growth and development, and mounted Tensiometers at depths of 30 and 50 cm soil were used in the middle and final stages of growth. In order to carry out irrigation at the potential point of view, the tensiometers were fully controlled and when the calibrated tensiometer screen showed the desired potential point, irrigation was carried out and the irrigation process continued until the soil moisture reached the crop capacity level. Yield, yield components such as number of seeds per head, along with water use efficiency were measured. Data were statistically analyzed using SAS Statistical software. Treatment means were compared using LSD test.
Results and Discussion: The results showed that the water usage parsimony of 153.6 mm (21.5 percent) between the 40 and 55 c-bar tensions caused that the yield, number of seeds per head and height of plant decreased by 12.5%, 12.8% and 11%, respectively, but water use efficiency increased 10.3%. Compared with 55 c-bar tention, 70 c-bar also decreased the yield, number of seeds per head and height of plant by 33.4%, 22.9% and 22.5%, respectively but increased water use efficiency by 4.7%. Moreover, the yield in subsurface drip irrigation increased by 499 kg/ha compared with surface irrigation. In addition, parsimony of water usage was 10% and water use efficiency increased by 21.5%. Number of seeds per head and the height of plant increased by 8.2% and 8.7%, respectively in subsurface drip irrigation.
Conclusion: According to the results of this study conducted on sunflower in Jirot area, it was concluded that the application of soil matric potential of 55 centibar in subsurface drip irrigation system is the best approach to increase water use efficiency during periods of drought.
Saeid ghavam seeidi noghabi; Abbas Khashei-siuki; Hossein Hammami
Abstract
Introduction: Water is one of the most important factors limiting agricultural developments in arid and semi-arid regions in the world. One of the important issues of water management is assessment and determination of water requirement of plants. One of the main water management strategies in agriculture ...
Read More
Introduction: Water is one of the most important factors limiting agricultural developments in arid and semi-arid regions in the world. One of the important issues of water management is assessment and determination of water requirement of plants. One of the main water management strategies in agriculture is to assess and determine the plants water requirement. Due to dry and semi-arid weather conditions in Iran the optimal use of water resources is crucial. Plants water requirements are the important parts of the hydrological cycle, and its precise estimation is essential for water budget studies, facilities, management, design of new irrigation systems and water resources management. The determination of behavior and characteristics non-reference vegetation compared to reference vegetation (grass) is the first step in estimating the evapotranspiration of crops. It is important to determine the crop factor in order to measure the water requirement of the crop at different stages of growth. The crop coefficient expresses the effects of crop and soil moisture on a non-reference plant species relative to the reference plant. Among the medicinal herbs, Hibiscus sabdariffa L. is an annual tropical and sub-tropical herbaceous plant belongs to Malvaceae family. Red calyces of Roselle are a source of anthocyanins (about 1.5 g/100 g dry weight), vitamin C and other antioxidants, such as flavonoids (gossypetin, hibiscetine, and sadderetine). Roselle is a medicinal plant that cultivated in Iran especially in Sistan and Baluchestan province. Regarding the long history of cultivation, and high consumption in Iran and the world so far, there has not been a scientific report about Roselle water requirement at different stages of growth. Therefore, this research was carried out with the aim of obtaining Roselle water coefficients and studying the pattern of its changes during the growing season in dry and semi-arid climates of Birjand using the lysimetric method.
Materials and Methods: To determine the Roselle crop coefficient, as a valuable medicinal herb, a lysimetric experiment was conducted in faculty of agriculture, Birjand University during the growing season in 2017. The lysimeters used for this experiment have 20 cm diameter and 16 cm in height. Three lysimeters used for sowing Roselle and three lysimeters used for reference plant. There are six orifices as a water drain in the bottom of each lysimeter. Floor of lysimeter covered by 5 cm granule layer, then filled with soil and cow decayed fertilizer mixture. In each lysimeter, 25 seeds of Roselle were sown. To determine potential evapotranspiration, 12 centimeters height grass was used as the reference plant. Water requirement of Roselle was determined by water balance method. The Roselle growth period was divided into four stages included initial (10% plant growth after emergence), development (between 10% plant growth and before flowering), middle (between early flowering and end flowering), and end (between end flowering and seed ripening). Weed control was achieved by hand hoeing during the growth season. Drainage water was measured by weighting and soil moisture hold at field capacity during the growth season.
Results and Discussion: Results of this study showed that Roselle plant in the initial stage due to slow growth and low transpiration have low Kc compared to middle and development stage. The average coefficient of Roselle was 1.26, 1.55, 1.81, and 0.96 in the initial, development, middle, and end stages respectively. Duration of growth stages for Roselle in Birjand region is 35, 75, 100, and 30 days after emergence. This results revealed an increasing trend from initial to development and middle stages. However, in the end stage of Roselle, Kc decreased. The result of this study showed that evapotranspiration of Roselle was 3819.57 mm whereas the reference plant evapotranspiration was 2420.3 mm. Due to water shortage in the arid and semi-arid region, this plant is not proper for sowing in this area.
Conclusions: According to the results of this study, the annual average evapotranspiration rate of the Roselle was 3819.57 mm whereas the reference plant evapotranspiration was 2420.3 mm. Therefore, the water requirement of Roselle is very high during growth period. Finally, according to the high water requirement and water deficient in Birjand, Iran; it seems that Roselle is not a proper plant for sowing in this area.
M. Moayeri; E. Pazira; H. Siadat; F. Abbasi; hossein dehghani
Abstract
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern ...
Read More
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern part of the lands downstream of the Karkheh River Dam, where summer maize is planted in 75 cm spaced rows and irrigated by furrows. During the two years of the research and considering the prevailing diversity of the sources of irrigation water (Based on the ratio), seven irrigated field units were selected as follows: two units using groundwater (wells), three units receiving surface water from irrigation network, one unit taking water directly from the river, and one unit using network and well water. In each irrigation unit, three farms were chosen with regard to irrigation and farming management. In the field trials, some physical and chemical properties of the soil, soil test for nutrition (NPK) availability, the volume of inflow applied to the field by the farmer and runoff water in each irrigation, and total crop yield was measured and maize evapotranspiration was calculated. Then, the irrigation and rain water productivity (WPI+R), water application efficiency (WAE), and maize crop water productivity (CWP) was determined for each field. Based on the two years results, the average yield of maize kernel, WPI+R , WAE, and CWP values were, 4844 kg/ha, 0.38 kg/m3, 38.6,%, and 1.01 kg/m3, respectively. The results and observations made during this study indicated that the most important reasons for low water productivity were inadequate knowledge of farmers in irrigation, plant nutrient deficiencies, and improper crop management practices.