Soil science
M.S. Sadati; A. Beheshti Ale Agha; F. Hamedi
Abstract
Introduction
Changing land use may have a major influence on physical, chemical, and biological soil properties with a consequence for soil functioning and productivity. Abandonment of agricultural lands is actually a kind of restoration of these lands to their original natural conditions, which is ...
Read More
Introduction
Changing land use may have a major influence on physical, chemical, and biological soil properties with a consequence for soil functioning and productivity. Abandonment of agricultural lands is actually a kind of restoration of these lands to their original natural conditions, which is often done through human intervention. Soil restoration after land abandonment is a complex phenomenon. The pastures of our country are typically cultivated in rainfed methods, and the use of agricultural inputs such as animal manure, poisons, and chemical fertilizers is not very common. Therefore the continuous cultivation of a product and the lack of use of agricultural inputs causes a gradual decrease in fertility and increase erosion. Hence, after years of cultivation, the production potential decreases, and the land is abandoned.
Materials and Methods
This study was conducted to determine the effects of land abandonment on some physical, chemical, and biological soil properties in the 0-20 and 20-40 cm depth at three different sites including Lal Abad, Qaleh Kohneh and Chalab-e Pain, using 2×2 factorial layout arranged in a completely randomized design (CRD) with three replications. The physical, chemical, and biological characteristics of the soil were measured by conventional laboratory methods. Electrical conductivity of saturated paste extract (ECe) with electrical conductivity meter device in saturated paste extract, pH of saturated paste with pH meter device, and bulk density by cylinder method were determined in the samples. The amount of dispersible clay (DC) was determined by the method of Gee and Bauder and the Mean Weight Diameter (MWD) was determined by the method of the wet sieve. The amount of absorbable phosphorus by extraction method and total soil nitrogen by Keldahl method were measured in the samples. The amount of soil organic carbon (OC) in the samples was determined by the method of Walkley and Black. Mineralization of organic carbon (soil respiration) (Cmin) and metabolic quotient (qCO2) were obtained by validated and conventional methods.
Results and Discussion
The results showed that the abandonment of agricultural lands significantly increased the MWD and reduced the amount of dispersible clay. Bulk density also decreased due to the abandonment of agricultural land in all areas except the Qaleh Kohneh area. The results of the analysis of the chemical characteristics of the soil indicated a decrease in soil pH in all areas and depths, except in the Qaleh Kohneh area. The biological results also showed that the abandonment of agricultural lands caused the change in biological characteristics. Abandonment of agricultural lands in all three regions led to an increase in microbial biomass carbon and soil microbial respiration. High microbial respiration in abandoned lands is probably related to more organic carbon in these soils. Loss of soil organic matter due to cultivation and improper soil management is often the main reason for reducing soil respiration in agricultural lands compared to abandoned lands.
Conclusion
Changing land use from agriculture to abandonment improved the physical, chemical, and biological indicators of soil quality, especially the surface layer of the soil, which ultimately led to the improvement of soil quality in all the studied areas. It can be concluded that the release of agricultural lands has increased soil health by increasing the carbon input into the soil, improving the soil aggregates, and improving the microbial activity of the soil.
M. A. Mahmoodi; S. P. Naghshbandi
Abstract
Introduction: Soil erosion is a serious environmental threat leading to loss of nutrient from surface soil, increased runoff, lake and reservoir sedimentation, and water pollution. Thus, estimation of soil loss and identification of critical area for implementation of best management practice is central ...
Read More
Introduction: Soil erosion is a serious environmental threat leading to loss of nutrient from surface soil, increased runoff, lake and reservoir sedimentation, and water pollution. Thus, estimation of soil loss and identification of critical area for implementation of best management practice is central to success of soil conservation programs. Soil erosion modeling is an efficient method to simulate soil erosion, to identify sediment source areas, and to evaluate soil conservation measures. One of the most widely applied empirical models for assessing the sheet and rill erosion is the Universal Soil Loss Equation (USLE). Originally, USLE was developed mainly for soil erosion estimation in croplands or gently sloping topography. The RUSLE is an extension of the original USLE with improvements in determining the factors controlling erosion. It is an empirical model commonly used to estimate soil loss potential by water from hillslopes across large areas of land. RUSLE is a linear equation that estimates the annual soil loss as the product of environmental factors include rainfall, soil erodibility, slope length, slope steepness, cover management and conservation practices as inputs. To implement RUSLE over large areas, detailed sets of spatially explicit data are needed for precipitation, soil type, topographic slope, land cover and land use type. Conventionally, the collection of all these data from field studies is time-consuming and expensive. The integration of field data and data provided by remote sensing technologies through the use of geographic information systems (GIS) offers potential to estimate spatially input data for RUSLE over large and relatively sparsely sampled areas. Keeping in view of the above aspects, the objectives of the present study were 1) to integrate the field data and data provided by Landsat Enhanced Thematic Mapper (ETM) imagery with RUSLE through the use of GIS to estimate spatial distribution of soil erosion at Gawshan dam basin in west of Iran and 2) to delineate soil erosion probability zones by reclassifying of the prepared soil erosion map.
Materials and Methods: The annual rainfall erosivity factor (R) was determined from monthly rainfall data of 11 years (2005-2015) for 7 rain gauge stations in the the study area. Spatial distribution of R was estimated using ordinary kriging method of interpolation. The soil erodibility factor (K) was estimated on the basis of soil map prepared from land survey and Landsat ETM remote sensing data. The physical and chemical parameters required to calculate K were measured in the different soil units, and its spatial distribution was coincident with the soil unit boundaries. The topographic factor (LS) was derived from digital elevation model (DEM) of 30 m resolution. The annual crop management factor (C) was calculated from normalized difference vegetation index (NDVI) derived from Landsat ETM imagery for different seasons. Since there is a lack of field data regarding the conservation practices that have been taken place in the study area, the conservation support practice factor (P) value was taken as 1. Finally, average annual soil loss was estimated as the product of the mentioned factors, and categorized into four classes viz., low, moderate, high and very high erosion.
Results and Discussion: The estimated R, K, LS and C range from 564 to 1311 MJ mm ha-1 h-1 y-1, 0.02 to 0.04 t h MJ-1 mm-1, 0 to 2436 and 0 to 1, respectively. The results indicate the estimated mean annual potential soil loss of about 2.35 t ha-1, however in the 50% of the basin area annual soil loss is lower than 0.92 t ha-1. Based on categorized soil erosion map about nearly 52.5% of the basin area produces low erosion of 0.43 t ha-1 annually, whereas very high probability zone covers about 4% of the basin area, located dominantly in the southwestern part of the basin. Our results showed that slope steepness factor is the most important factor that controls soil erosion rate in the basin.
Conclusion: This study demonstrates the integration of field data and Landsat ETM imagery data with RUSLE through the use of GIS to estimate spatial distribution of soil erosion in Gawshan dam basin. The results of this study can be helpful for identifying critical areas for implementation of conservation practice and provide options to policy makers for prioritization of different regions of the basin for treatment.
Hossein Kheirfam; Mehdi Homaee; Seyed Hamidreza Sadeghi; Behrouz Zarei Darki
Abstract
Introduction: Land degradation and soil losses are common and universal problems which is a pose threat to food security, ecosystem health and consequently sustainable development and human well-being. Meanwhile, improving the chemical and physical properties of biological soil crusts is an effective ...
Read More
Introduction: Land degradation and soil losses are common and universal problems which is a pose threat to food security, ecosystem health and consequently sustainable development and human well-being. Meanwhile, improving the chemical and physical properties of biological soil crusts is an effective factor in soil loss controlling. Also, the chemical properties specially soil nitrogen are the important factors for soil quality determination. To this end, various strategies on techniques of amendments have been implemented to improve soil properties and quality. Although the application of most strategieshave been verified to soil quality,but their application in real conditions is restricted due to detrimental environmental effects, instability, cost and time-consuming and less accessibility. Recently, biological soil crusts enrichment based on soil microorganism inoculation and stimulation has been raised as a biological and useful strategy in soil conservation sciences. Accordingly, the present study aimed to investigate the role of individual and combined inoculation of bacteria and stimulant nutrient material into small-scale plots on soil nitrogen variation as one of the important soil chemical component.
Material and Methods: The study soil was collected from the erosion-prone and poor biological crust of a sub-watershed from Chalusrood watershed located in Mazandaran Province. The soil sampling was carried out from the upper of the soil surface using a 5cm-diameter coring polyvinyl chloride. The sampled soils were air-dried and sieved by a 2 mm-sized mesh. The Nutrient Agar and Tryptic Soy Agar general were used to bacteria isolation. The identification of isolated bacteria was carried out based on available protocols. Effective nitrogen-fixing bacteria were selected and then purified by selective Azotobacter Agar, Modified II and DSMZ1media. The purified bacteria proliferated by LB Broth medium and then inoculated into soil small sized-plots simultaneously with stimulant nutrient material throught spraying technique. The study was conducted at plot scale with 0.5×0.05×0.5 m dimensions and the plots filled by study soil based on standard protocols. The soil samples were taken at once the 7-8 days from surface of soil plots and the amounts of soil nitrogen were measured by using Kjeldahl method. As well as, experiment period was planned about 60 days. The one-way ANOVA and Tukey HSD test were subjected to statistically analyses.
Results and discussion: The results indicated that the Azotobacter sp. and Bacillussubtilis strain were selected as the most appropriate bacteria to be applied for nitrogen fixing in soil. Also, the results showed that the average total organic nitrogen in control plots ranged from 0.082 to 0.136%, which implies the soil limitation of total nitrogen. However, the measured total organic nitrogen in the bacteria, stimulant nutrient, and combined inoculation plots varied from 0.11 to 0.241%, 0.117 to 0.204%, and 0.124 to 0.374%, respectively. These results demonstrated the positive role of inoculated treatments on fixing nitrogen in the soil. Therefore, the population of Azotobacter sp., the Bacillussubtilis strain, was considerably increased after the inoculation process, and this led to converted and fixed atmospheric nitrogen (N2) into utilizable nitrogen (NH4 or NO3) in soil by using the enzyme nitrogenase as a catalyst. The statistical analyses and evaluation results were indicative of a significant (p
Davood Davoodi Moghadam; Seyed Hamidreza Sadeghi; Mahmood Azami Rad
Abstract
Introduction: It is vital to control land degradation, for conserving precious natural treasures. Quantification of runoff production and soil and nutrient loss from wild lands under different managerial systems is one of the scientific and optimal management in agriculture and natural resources, as ...
Read More
Introduction: It is vital to control land degradation, for conserving precious natural treasures. Quantification of runoff production and soil and nutrient loss from wild lands under different managerial systems is one of the scientific and optimal management in agriculture and natural resources, as a major component of sustainable development. Many researches have been conducted to assess the effects of different land uses on soil erosion and runoff generation throughout the globe. Most of which, mainly verified the detrimental effects of human intervention on land degradation. However, limited comprehensive and comparative studies have been conducted to consider the amount of surface runoff generation, and soil and nutrient loss from watersheds with different management patterns viz. untreated and treated small watersheds.
Materials and Methods: The present study aimed to compare surface runoff generation,soil and nutrient loss in Kakhk treated and untreated watersheds with an area ca. 222 ha and precipitation of some 243 mm per annum. Other physical and geological characteristics of the paired watersheds were also similar to allow assessing the effects of study measures on soil, water and nutrient losses. The area under consideration has been located in Khorasan Razavi Province in northeastern Iran. The present study was performed in plots with standard size of 22.1 × 1.8 m in treating and representative areas, with three replicates and on the storm basis occurred during early 2011 and mid-2014. The treated plots were covered by biological measures viz. seeding, bunching and exclusre. The study plots have been situated on eastern,western and northern aspects with respective slope of 55, 40 and 40 %. The entire runoff from study plots were collected in a container in 0.5×1×1 m. The sediment concentration was also measured in 2-liter samples taken from the container after a complete mixing of the entire collected runoff. The sample was treated by decantation technique, oven dried and weighted by high precision scale. The transported elements, i.e. potassium, phosphorous and nitrogen were also measured in solute and particulate forms. Ultimately, the data bank was developed in Excel 2010 and got ready to be processed in SPSS 19.0 software package and statistically compared with the help of analysis of variance (ANOVA) test.
Results and Discussion: The results showed that the soil loss, nitrogen concentration, potassium concentration and sediment concentration had significant difference (p
P. Mohajeri; P. Alamdari; A. Golchin
Abstract
Introduction: Topography is one of the most important factors of soil formation and evolution. Soil properties vary spatially and are influenced by some environmental factors such as landscape features, including topography, slope aspect and position, elevation, climate, parent material and vegetation. ...
Read More
Introduction: Topography is one of the most important factors of soil formation and evolution. Soil properties vary spatially and are influenced by some environmental factors such as landscape features, including topography, slope aspect and position, elevation, climate, parent material and vegetation. Variations in landscape features can influence many phenomena and ecological processes including soil nutrients and water interactions. This factor affects soil properties by changing the altitude, steepness and slope direction of lands. In spite of the importance of understanding the variability of soils for better management, few studies have been done to assess the quality of soils located on a toposequence and most of these studies include just pedological properties. The aim of this study was to investigate physical and chemical properties of soils located on different slope positions and different depths of a toposequence in Deilaman area of Gilan province, that located in north of Iran.
Materials and Methods: The lands on toposequence that were same in climate, parent material, vegetation and time factors but topographical factor was different, were divided into five sections including steep peak, shoulder slope, back slope, foot slope and toe slope. In order to topsoil sampling, transverse sections of this toposequence were divided into three parts lengthways, each forming one replicate or block. 10*10 square was selected and after removing a layer of undecomposed organic residues such as leaf litter, three depths of 0 to 20, 20 to 40 and 40 to60 cm soil samples were collected. physical and chemical characteristics such as soil texture, bulk density, aggregate stability, percent of organic matter, cation exchange capacity, available phosphorous and total nitrogen were measured.
Results and Discussion: The results showed that, because of high organic matter content and fine textured soils on the lower slope positions including foot slope and toe slope, aggregate stability, cation exchange capacity, available phosphorous and total nitrogen were maximum in these positions, whereas, bulk density had a reverse trend and was higher in the upper slope positions than the lower slope positions. The high content of organic carbon, phosphorus and total nitrogen in the soil of foot and toe slope positions, can be attributed to soil erosion and transferred from top of the slope and their accumulation in these situations. The results also revealed that, with increasing depth, aggregate stability, organic carbon content, cation exchange capacity, available phosphorous and total nitrogen content of soils decreased, whereas, clay content and bulk density had a reverse trend and increased with increasing the depth. Reducing the amount of organic carbon with increasing depth was because of the remains of plants and roots in the surface horizons and the presence of more organic carbon. Since phosphorus and nitrogen in the soils are highly dependent on organic matter, Thus, changes in these indicators are mainly obeys from this materials.
Conclusion: In general, it became appears from this study, that the topography factor had important effect on studied soil properties. The changes observed in the quality of soils located on different slope positions can be attributed to the differences of the soil in erosion rate and moisture content and different sediment receptions in different positions of toposequence as affected by the amount and distribution of rainfall. Considering the effect of the position of the landscape on the physical and chemical properties of soil, recommended analysis of the landscape is better to be done in the sustainable land management and also for soil and water conservation programs. Because of the different management practices in different parts of landscape is difficult and perhaps impossible, in order to maintain soil, conservation management must be done based on soil quality in areas with maximum damage and minimum quality.
Seyed Hamidreza Sadeghi
Abstract
Awareness of the variety, quality and quantity of sediment transport rates in different time scales, is inevitable for monitoring the hydraulic behavior of channel and flow affected by the mining activities and proper management of sand removal. However, less comprehensive studies have been conducted ...
Read More
Awareness of the variety, quality and quantity of sediment transport rates in different time scales, is inevitable for monitoring the hydraulic behavior of channel and flow affected by the mining activities and proper management of sand removal. However, less comprehensive studies have been conducted on fluvial behavior and characteristics of the bed load under different conditions. The present study therefore aimed to investigate the effect of sand mining with different harvesting and hydrological conditions on particle size distribution and morphometric characteristics of bed sediments for three sand and gravel mines viz. Vaze-e-Olia, Vaze-e-Sofla and Alesh-Roud in Mazandaran Province, Iran. In order to achieve the study purposes, different bed sediments characteristics were computed by GRADISTAT and GIAS softwares after extracting bed sediments morphometric specifications with the help of Gravelometer and Paint software for sampling sites located in the upstream and the downstream of the study mines. The samplings were taken place on monthly basis during a year from February 2012 to January 2013. The results of the study showed that the different natural and sand and gravel mining conditions and other anthropogenic activities affected the particle size distribution and morphometric characteristics of riverbed sediments. According to the statistical analyses, most of the variables were non-significantly (P>0.07) differed in the upstream and the downstream sites in the study mines.