Soil science
Mansour Mirzaei Varouei; Sh. Oustan; A. Reyhanitabar; N. Najafi
Abstract
Introduction
Savory is considered one of the most important medicinal plants, which is used in various food and medical industries. Nitrogen (N) plays a major role on the growth and yield of medicinal plants. Therefore, an adequate supply of N is required for successful production of savory. However, ...
Read More
Introduction
Savory is considered one of the most important medicinal plants, which is used in various food and medical industries. Nitrogen (N) plays a major role on the growth and yield of medicinal plants. Therefore, an adequate supply of N is required for successful production of savory. However, the application of chemical N fertilizers is associated with many obstacles such as groundwater pollution, N enrichment of surface waters, and drop in the quality of plants. Accordingly, nowadays, great attention has been paid to organic fertilizers. In this regard, humic acid-based fertilizers have shown promising results. Humic acids (HAs) could be converted into nitrohumic acids (NHAs) through the nitration process, in which nitro groups (NO2) are located on the aromatic rings. This process increases the N content of the HA. Thus, NHAs can be used as organic N fertilizers in the cultivation of medicinal plants whose organic production is a priority. However, the effects of these types of fertilizers on plant growth and physiological characteristics have not been well understood. Accordingly, the present study for the first time investigates the effectiveness of NHA on the morphological and physiological characteristics of savory, as well as N loss through leaching.
Materials and Methods
In the current study, HA was initially extracted from leonardite (purchased from Yazd Golsang Kavir Company) as a rich source of HA. Then, NHA was prepared through the nitration process using nitric acid (50% by volume). After that, using FT-IR (Fourier transform infrared spectroscopy) and CHNS analysis the extracted HA and NHA were characterized, and their N content was determined. Afterward a greenhouse experiment in a completely randomized design (CRD) with three replications was conducted to determine the effects of 16 treatments, including control (without urea, HA and NHA), urea (U1, U2 and U3), humic acid (HA1, HA2 and HA3), nitrohumic acid (NHA1, NHA2 and NHA3), urea-humic acid (U1HA1, U2HA2 and U3HA3), and urea-nitrohumic acid (U1NHA1, U2NHA2 and U3NHA3) on the morphological and physiological characteristics of savory plant. The treatment levels were determined as 40, 80, and 120 mg N kg-1 for the first, second and third level of the treatments, respectively. In the combined treatments of urea and HA or NHA, an equal fraction of the total nitrogen (N) was applied. At the end of the experiment, standard methods were used to assess various characteristics, including root length, leaf area, plant height, root volume, wet and dry weights of shoot and root, leaf chlorophyll index, concentrations of phosphorus, potassium, nitrogen, nitrate, and nitrate reductase in both the shoot and root. Additionally, leaching was conducted on specific days during the experiment, and the leachate was collected for nitrate measurement.
Results and Discussion
The results showed that using the nitration process, some characteristics of the NHA such as total acidity, the content of carboxylic and phenolic groups as well as N content improved as compared to the initial HA. Moreover, the results indicated that most of the morphological and physiological traits of savory plants, including leaf area, plant height, root length, fresh and dry weights of root and shoot as well as chlorophyll index, and the concentration of nitrogen, phosphorous, potassium, nitrate and nitrate reductase enzyme were significantly higher in the NHA treatments than those of HA. In addition, the highest shoot dry weight was obtained in the combined treatments of U3NHA3 and U3HA3 as well as in the U3 treatment alone. The average rate of nitrate concentration increase in the U treatments was 1.77 times higher than the UNHA treatments. According to the results, U3 treatment indicated the highest nitrate loss which by using the U3NHA3 treatment, the mean concentration of nitrate in the leachate decreased by about 40.5% as compared to the U3 treatment.
Conclusion
The findings of this research revealed that most of the morphological and physiological traits of savory plant showed better responses to the combined treatments of U3NHA3 and U3HA3 as well as to the U3 treatment alone. However, with regard to the lower accumulation of nitrate in the shoot of savory as well as to the lower nitrate leaching, the combined treatments were preferred. Accordingly, NHA can be a alternative nitrogen source in increasing the yield and growth indicators of savory. However, the reasons behind the fact of the better performance of combined nitrogen treatments than the individual ones require more research in the future.
Soil science
M. Gheitasi; Sh. Kiani; A. Hosseinpur
Abstract
Introduction: Large amounts of nitrogen (N) fertilizers are being applied to optimize yield in vegetable production. Nitrogen use efficiency in vegetable fields is low due to high application of N fertilizers in frequent cultivation, short growth cycles and their shallow rooting system. Nitrification ...
Read More
Introduction: Large amounts of nitrogen (N) fertilizers are being applied to optimize yield in vegetable production. Nitrogen use efficiency in vegetable fields is low due to high application of N fertilizers in frequent cultivation, short growth cycles and their shallow rooting system. Nitrification inhibitors (NI) are compounds that retard the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in soil. In different studies, the positive effects of these compounds on the reduction of N losses from soil and increase of N use efficiency and crop yield have been demonstrated. The 3,4-dimethylpyrazole phosphate (DMPP) is a very popular nitrification inhibitor around the world. The efficacy of this molecule depends on climatic conditions and soil properties including of texture, pH, organic matter, moisture, temperature and mineral nitrogen. In this experiment, the effects of NI 3, 4-dimethylpyrazole phosphate on the N use efficiency of two spinach varieties were investigated in different soils.
Materials and Methods: A pot experiment was conducted in a completely randomized design with a factorial arrangement with three replications at Shahrekord University. Experimental factors were different N fertilizer sources, soil types and spinach varieties. Three N fertilizer sources consisted of urea, ammonium sulfate nitrate (ASN) and ASN plus DMPP (0.8 %). A no added N fertilizer treatment was considered as the control. The soil factor contained three different soils with different physical and chemical characteristics. The textures of the soils No. 1, 2 and 3 were loamy sand, loam and silty clay, respectively. Three selected soils were non-saline (EC1:2=0.14-0.31 dS m-1) and alkaline (pH1:2=7.9-8.0). Organic carbon and calcium carbonate equivalent (CCE) ranged from 0.26 to 0.35%, and 28.5 to 36.2%, respectively. Two spinach varieties were smooth-leaf (Giant Santos) and wrinkled-leaf (Viking). The used soils were mixed homogenously with 100 mg P kg−1 soil as triple super phosphate, 5 mg Fe kg−1 soil as Fe-EDDHA, 15 mg Zn kg−1 soil as ZnSO4.7H2O, 5 mg Mn kg−1 soil as MnSO4.H2O and 2.5 mg Cu kg−1 soil as CuSO4.5H2O. Nitrogen was applied at the rate of 150 mg kg-1 soil in two split doses before sowing and after one month. Twelve seeds were sown in 7 kg soil in plastic pots, and then placed in a greenhouse. The pots were thinned to 7 seedlings per pot after plant establishment. One week before harvesting, 10 measurements were done using a chlorophyll content meter to determine chlorophyll content index of leaves. At the end of the experiment, shoot dry weight was determined and plants were mixed and dried to measure N concentration. Finally, shoot N uptake and N use efficiency were calculated in different treatments.
Results and Discussion: In the present study, spinach plants fertilized with ASN+DMPP had a better appearance (dark green color) than those grown without DMPP. The results indicated that application of ASN with DMPP led to significant increase of leaf chlorophyll content index in comparison of ASN and urea fertilizers in all studied soils. Application of DMPP slowed down the process of ammonium oxidation to nitrite. Thus, this increase may be due to the role of ammonium in N nutrition of spinach plants treated with DMPP. This may be explained by the fact that ammonium has a positive effect on the synthesis of polyamines, cytokinins and gibberellins. The presence of these two phytohormones retarded senescence and chlorophyll degradation in plants. However, adding ASN to DMPP resulted in a significant decrease of shoot dry weight as compared with the ASN and urea fertilizers in soils No. 1 (loamy sand) and 2 (loam). In soil No. 3, shoot dry weight was not affected in plants fertilized with ASN+DMPP. Also, agronomic and physiological efficiencies of N significantly decreased by applying ASN+DMPP in comparison with ASN. It seems that application of DMPP strongly delayed the ammonium nitrification to nitrate, and consequently the soil nitrate availability appears not to be synchronized with spinach N needs. Due to short growth cycle of spinach, low availability of nitrate resulted in decreased shoot dry weight of spinach. The highest N use efficiency was observed is soil No. 2 (loam) and Giant Santos had more N use efficiency than Viking.
Conclusion: The results demonstrated that using ASN+DMPP led to yield loss, and we cannot recommend its application as a nitrogen fertilizer for spinach. However, application of ASN+DMPP is an effective strategy for improving qualitative appearance (dark green color) of spinach. Also, all studied indices were not affected in plants fertilized with ASN and urea. Therefore, application of both fertilizers is recommended for spinach production under similar conditions of the present study.
Mahbubeh Gheitasi; Ali Reza Hosseinpur
Abstract
Introduction: Leafy vegetables such as spinach (Spinaciaoleracea L.) contain high levels of nitrate. Using nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) is one of the strategies for reducing nitrate accumulation. Nitrification inhibitors are compounds that delay the biological ...
Read More
Introduction: Leafy vegetables such as spinach (Spinaciaoleracea L.) contain high levels of nitrate. Using nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) is one of the strategies for reducing nitrate accumulation. Nitrification inhibitors are compounds that delay the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in soil. Soil properties such as texture, pH, organic matter, moisture, temperature and mineral nitrogen have important effects on the efficiency of NIs to delay nitrification. A pot experiment was conducted to investigate the effects of NI 3,4-dimethylpyrazole phosphate (DMPP) on soil mineral nitrogen (ammonium and nitrate) content, yield and nitrate concentration of spinach.
Materials and Methods: A completely randomized factorial design was carried out employing three factors consisted of nitrogen fertilizer type, soil type and spinach variety with three replications at Shahrekord University. Nitrogen fertilizers included urea, ammonium sulfate nitrate (ASN) and ASN plus DMPP (0.8 %). A no N fertilizer application was considered as control treatment. The soil factor contained 3 different soils with different physical and chemical characteristics. Two spinach varieties were smooth-leaf (Giant Santos) and wrinkled-leaf (Viking). The dose of applied nitrogen in all experimental treatments was 150 mg kg-1 soil that was applied in two split doses before sowing and after one month. The textures of three selected soils were loamy sand, loam and silty clay for the soils number 1, 2 and 3, respectively. Three selected soils were non-saline (EC1:2=0.14-0.31 dS m-1) and alkaline (pH1:2=7.9-8.0). Organic carbon and calcium carbonate equivalent (CCE) ranged from 0.26% to 0.35% and 28.5% to 36.2%, respectively. At 30 and 60 days after sowing, soil subsamples were taken to determine ammonium and nitrate content. The ammonium and nitrate concentrations (extracted with 0.5 M K2SO4) were determined calorimetrically using a spectrophotometer at a wavelength of 667 and 410 nm, respectively. At the end of the experiment, shoot fresh weight was determined and plants was mixed and dried to measure nitrate accumulation.
Results and Discussion: The results indicated that the application of ASN with DMPP led to significant increase of ammonium compared with ASN and urea fertilizers in three soils. At 30 days after sowing, the amount of this increase for ASN plus DMPP in comparison of ASN and urea were 182% and 78% for the soil number 1 (loamy sand), 105% and 65% for the soil number 2 (loam) and 89% and 74% for the soil number 3 (silty clay), respectively. By contrast, the application of ASN with DMPP led to significant decrease of soil nitrate in comparison of ASN and urea fertilizers in three soils. At 60 days after sowing, the amount of this decrease for ASN plus DMPP in comparison of ASN was 52%, 40% and 27% for the soils number of 1, 2 and 3, respectively. It means that the application of DMPP has slowed down the process of ammonium oxidation to nitrite. In fact, the addition of DMPP retained soil nitrogen as ammonium form for longer time. The application of NI DMPP also had positive effect on decrease of nitrate concentration in the soil. Unlike nitrate, ammonium is less susceptible to leaching and thus the application of DMPP can reduces nitrogen loss from the soil. However, the application of ASN with nitrification inhibitor DMPP in soils No. 2 (loamy sand) and No. 3 (loamy) significantly reduced shoot fresh weight of both spinach varieties compared with the similar treatment but without NI. This decrease was due to the toxic effects of high level of soil ammonium on the plant growth. While, in the soil No. 3 (silty clay) in Viking variety, the use of ASN plus DMPP resulted in significant increase of spinach shoot fresh weight to 29% in comparison with the same treatment but without NI. The highest and lowest values of shoot fresh weight (229 and 16.2 g pot-1, respectively) were obtained by Giant Santos variety in soil No. 3 (silty clay) with ASN plus DMPP and soil No. 1 (sandy loam) with no added N fertilizer. The application of ASN with nitrification inhibitor DMPP induced significant decrease of shoot nitrate concentration in spinach in comparison of ASN and urea. The amounts of this decrease for ASN plus DMPP in comparison with ASN and urea were 25.7% and 31.5% for the soil number 1 (loamy sand), 29.1% and 37.1% for the soil number 2 (loam) and 33.9% and 34.0% for the soil number 3 (silty clay), respectively. This decrease was due to ammonium nutrition of spinach plants.
Conclusion: In all studied soils, application of ASN with nitrification inhibitor DMPP is recommended for diminishing nitrate content in both spinach varieties (Giant Santos and Viking).
S. Sangsefidi; A. Lakzian; A.R. Astaraei; M. Banayan; M. Mazhari
Abstract
Introduction: Nitrification inhibitors are compounds that slow biological oxidation of ammonium to nitrite by reducing the activity of Nitrosomonas bacteria, without affecting the subsequent oxidation of nitrite to nitrate, either by inhibiting or interfering with the metabolism of nitrifying bacteria. ...
Read More
Introduction: Nitrification inhibitors are compounds that slow biological oxidation of ammonium to nitrite by reducing the activity of Nitrosomonas bacteria, without affecting the subsequent oxidation of nitrite to nitrate, either by inhibiting or interfering with the metabolism of nitrifying bacteria. The first step of nitrification is inhibited (i.e., the activity of Nitrosomonas bacteria) by the nitrification inhibitors, while the second step for oxidation of nitrite (NO2-) to nitrate (NO3-) is normally not influenced. In recent years, numerous compounds have been identified and used as nitrification inhibitors, particularly in agricultural soils. They are chemical compounds that slow the nitrification of ammonia, ammonium-containing, or urea-containing fertilizers, which are applied to soil as fertilizers, such as thiourea, carbon Sulfide, thioethers, ethylene, 3-amino-1,2,4-triazole, dicyandiamide (DCD), 2-amino-4-chloro-6-methyl pyrimidine, ammonium thiosulphate and 3,4-dimethylpyrazole phosphate (DMPP). These inhibitors reduce the losses of nitrogen in soil. Some nitrification inhibitors are very effective in the efficiency of the nitrogen fertilizers. Recently, a lot of attention has been paid to nitrification inhibitors from an environmental point of view. Some nitrification inhibitors are very expensive and not economically suitable for land application. Nonetheless, many farmers and researchers apply these compounds for many purposes in some specific places. On the other hand, there are many inexpensive natural nitrification inhibitors such as Artemisia powder, Karanj (Pongamia glabra), neem (Azadrachta indica) and tea (Camellia sinensis) waste which can compete with the artificial nitrification inhibitors such as 3, 4-dimethylpyrazole phosphate (DMPP), dicyandiamide (DCD) which are very common nitrification inhibitors. Applying 1.5 kg ha-1 of DMPP is sufficient to achieve optimal nitrification inhibition. 4-dimethylpyrazole phosphate (DMPP) can significantly shrink nitrate (NO3) leaching. 4-dimethylpyrazole phosphate (DMPP) may also decrease N2O emission and the use of DMPP-containing fertilizers can improve yield. The aim of this study was to compare the effect of 3, 4-dimethylpyrazole phosphate (DMPP), Dicyandiamide (DCD) and powder Artemisia (ART) at the presence of Urea, cow manure and Vermicompost.Material and Methods: Effects of three nitrification inhibitors, (3, 4-dimethylpyrazole phosphate (DMPP), Dicyandiamide (DCD) and powder Artemisia (ART)) at the presence of three nitrogen sources (Urea, cow manure and Vermicompost) were investigated in a calcareous soil under lettuce cultivation in a greenhouse condition. The changes in the soil mineral nitrogen (nitrate and ammonium), plant nitrogen, nitrate accumulation in leaves and some of growth characteristics such as lettuce chlorophyll content, leaf area index, leaf dry weight and root dry weight were determined. The experiment was carried out in a completely randomized factorial design with three replications. Soil ammonium and nitrate concentration were measured during the experiment. The growth characteristics of lettuce were also measured at the end of experiment. Nitrogen and nitrate contents were also determined in lettuce leaves. Results and Discussion: The results of the experiment showed that soil nitrate decreased at the presence of three nitrification inhibitors but the soil nitrogen ammonium increased significantly. Application of nitrification inhibitors also reduced the concentration of nitrate in the lettuce leaves during two harvesting times. Moreover, the nitrogen concentration in the plant increased at the presence of nitrification inhibitors. The application of nitrification inhibitors influenced the plant growth characteristics and changed the lettuce growth characteristics. Chlorophyll content increased significantly in lettuce leaves. Leaf area index, leaf and root dry weight of lettuce increased notably when 3, 4-dimethylpyrazole phosphate (DMPP) and powder Artemisia (ART) nitrification inhibitors were applied to the soil samples. These growth characteristics, however, reduced significantly when dicyandiamide nitrification inhibitors was applied to the soil samples. In addition, the symptoms of toxicity were observed in lettuce plant when dicyandiamide nitrification inhibitors were applied to the soil samples. In general, the highest efficiency of nitrification inhibitors was recorded at the presence of urea fertilizer source and the greatest efficiency was observed initially for powder Artemisia (ART) and then for 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide, respectively, when urea fertilizer was applied to the soil samples. There was a positive correlation between soil nitrogen content and plant nitrate in the first and second harvest. The correlation between soil ammonium and plant nitrate (in the first and second harvest) and soil nitrate was negative.
tahereh mansouri; Ahmad Golchin; Zahra Rezaei
Abstract
Introduction: Selecting the right source of nutrient in a particular cropping situation requires a consideration of economic, environmental, and social objectives. One of the objectives is to keep all nutrient losses to a minimum. Since the use of nitrogen chemical fertilizers began more than 100 years ...
Read More
Introduction: Selecting the right source of nutrient in a particular cropping situation requires a consideration of economic, environmental, and social objectives. One of the objectives is to keep all nutrient losses to a minimum. Since the use of nitrogen chemical fertilizers began more than 100 years ago, it has been recognized that it can be lost as gaseous ammonia when an ammonical fertilizer is applied to calcareous soil. A process by which nitrogen exit from the soil in form of ammonia and enter to the atmosphere is called volatilization. Agricultural practices (use of chemical and animal fertilizers) are known as major sources of ammonia volatilization into the atmosphere. Nitrogen losses not only economically but also in terms of environment pollution is important. Ammonia volatilization is one way of the nitrogen losses from agricultural and non-agricultural ecosystems. A variety of soil chemical properties interact with environmental conditions at the site of the fertilizer application to determine the extent of NH3 loss. This article study some of the major factors that contribute to NH3 loss from N fertilizer. The aims of this study were to evaluate the impacts of concentrations of soil calcium carbonate (experiment 1), plant residue application (experiment 2), nitrogen fertilizer rate and source on volatilization of ammonia from soil.
Materials and Methods: Two factorial experiment with 36 treatments, three replications and 108 experimental unit for 25 days at a constant temperature of 30 ° C were conducted using a completely randomized design. The experimental treatments were three concentrations of soil calcium carbonate (20, 27 and 35% in experiment 1), three alfalfa plant residue application rates (0, 2.5 and 5% w/w in experiment 2), three rates of nitrogen (0, 200 and 400 kg/ha), four sources of nitrogen (urea, ammonium nitrate, ammonium sulfate and urea- sulfuric acid). Fertilizers were added to soil samples in form of solution and the moisture of soils was brought to field capacity. Samples were placed into special jars and amount of nitrogen volatilization were measured.
Results and Discussion: The results showed that ammonia volatilization from soil increased as the concentration of soil calcium carbonate, rates of nitrogen and alfalfa plant residues application increased. In first experiment the highest amount of nitrogen volatilization rate, as ammonia (33.21 µgr N/gr soil) was measured from 400kgN/ha soil for urea fertilizer and 35 percent calcium carbonate. Also the lowest amount (11.99 µgrN/gr soil) was obtained from 20 percent calcium carbonate without application of any nitrogen fertilizer. In this experiment, with an increase in the amount of soil calcium carbonate by 15%, the amount of volatilized nitrogen in the form of ammonia were six times. By increasing the amount of soil calcium carbonate of from 20 to 27% the amount of nitrogen losses as ammonia slightly increased but with a further increase of calcium carbonate (from 27 to 35%) the amount of nitrogen losses increased a lot and this increase was higher than the initial increase. The presence of calcium carbonate in the soil increase soil pH and ammonia volatilization. In second experiment the highest amount of nitrogen volatilization rate, as ammonia (32.28 µgr N/gr soil) was measured from 400kgN/ha soil for urea- acid sulfuric fertilizer and 5 percent of plant residues. Also the lowest amount (0.33 µgrN/gr soil) was obtained from soil without application of any nitrogen fertilizer and plant residues. The most of nitrogen losses in the form of ammonia in the amount of 15.34 micrograms per gram of soil was obtained from level of 5% of alfalfa residue. With the 2.5 percent increase in the alfalfa residue rate, ammonia volatilization from soil increased in rate of 3.24 micrograms per gram of soil and by increasing it from 2.5 to 5%, nitrogen volatilization increased in the amount of 8.88 micrograms per gram of soil.
Conclusion: The loss of nitrogen as ammonia with application of nitrogen fertilizers and without application of residues was as urea> ammonium sulfate> ammonium nitrate > urea-sulfuric acid and with application of crop residues was as urea-sulfuric acid