M.H. Rad; M.H. Asareh; M.R. Vazifeshenas; A.R. Kavand; M. Soltani Gerdeframarzi
Abstract
Introduction: Although jujube (Ziziphus jujuba Mill.) is known as a medicinal plant and is less important than other fruit trees, it has received more attention in recent years due to its significance in traditional Iranian medicine. There is no study on the actual water need for jujube trees and the ...
Read More
Introduction: Although jujube (Ziziphus jujuba Mill.) is known as a medicinal plant and is less important than other fruit trees, it has received more attention in recent years due to its significance in traditional Iranian medicine. There is no study on the actual water need for jujube trees and the impact of irrigation on yield and water use efficiency in the country. However, some studies emphasized on the need of regular watering and irrigation to improve the quality and quantity of jujube fruit. Given the importance of jujube in China, extensive researches have been conducted on water requirements, plant strategies to save water, impact of drought stress on plant morpho-physiological behaviors, impact of appropriate water distribution on soil quantity and quality of plant development, root distribution patterns and its impact on the amount of water consumed. In all cases, it has been emphasized that the mechanisms of water consumption in jujube differ by climate, genotype, irrigation method and management. In order to improve the quantity and quality of jujube fruit, it is necessary to balance the soil moisture condition and keep the plant away from stress. However, dehydration in jujube is a serious issue that should be addressed with the aim of saving water and improving fruit quality. In this study, the actual water requirement of the plant, the effect of different levels of deficit irrigation on evapotranspiration (ET) and crop coefficient (Kc) rate, yield and water use efficiency (WUE) in jujube trees were investigated. The moisture stress was applied through all stages of plant growth by deficit irrigation. Materials and Methods: In this study, the lysimeter experiment site of Yazd (Shahid Sadoghi Desertification Research Station) with 20 weighing drainage lysimeters (170 cm in height and 121 cm in diameter) was used. To measure evaporation from the soil surface, one lysimeter without plant was used. Note that the moisture content in this lysimeter was always maintained at the field capacity. For the measurement of reference ET (ET0), one lysimeter was used and it compared with ET0 calculated by Penman-Monteith-FAO. After preparing the lysimeters and providing the conditions for planting seedlings, we planted one tree per lysimeter. Trees collected from the villages of Alqoor, Flarg and Gyuk (South Khorasan Province). The suckers were two-years-old with the same size and shape. Trees were irrigated with 50 liters water on a weekly basis for six months. At the beginning of autumn of 2018, treatments including complete irrigation (field capacity), 30% and 60% of deficit irrigation were conducted in a completely randomized design with six replications. Soil moisture measurement during the experiment was performed by TDR. Soil moisture was recorded at 4 depths (0-30, 30-60, 60-90 and 90-120 cm) and their mean was considered as an index of soil moisture status to compensate the irrigation fraction. During the experiment and at the end, indices such as different stages of plant growth, ET, ET0, Kc, yield and WUE were determined. The data were analyzed by analysis of variance (ANOVA) using the statistical package SPSS ver. 16.0, and the mean values were also compared using LSD multiple range test (α = 0.05). Results and Discussion: The results showed that the jujube trees began their vegetative growth from late March (leaves appear) until the end of November (leaves fall) over 2017-2018 agronomic year in Yazd. During this time, which lasted about 235 days, four major and important stages were evident. The steps cited were in FAO's recommendation for deciduous fruit trees (in Issue 122 of the Iranian Irrigation and Drainage National Committee). The results of these studies showed that the length of different growth periods of jujube trees (including early stage, plant development stage, mid stage and end stage) was different with another deciduous fruit trees. ET values in three irrigation regimes showed that the highest ET was observed in July and the lowest in March. Annual ET in control, 30% and 60% of deficit irrigation treatments were 828.06, 514.04 and 386.04 mm, respectively, with 0.45, 0.28 and 0.21, annual Kc, respectively. The results of ET and Kc computed at different growth stages showed that the reproductive growth development period (flowering, fruit set beginning of fruit growth) had the highest ET. In control treatment, the lowest ET (60.81 mm) and Kc (0.27) were observed in early growth period with less than 10% of crown cover. The highest ET (316.22 mm) and Kc (0.60) were found in growth development period with full crown cover. Analysis of variance showed that there was a significant difference (P <0.0001) between the different irrigation treatments in terms of dry matter yield. There was a significant difference for WUE (P <0.001) between different irrigation treatments. Each of different irrigation regimes had a significant difference in yield. The highest yield for each tree was found for the control treatment with 229.36 g and the lowest yield with 57.90 g was observed for 60% deficit irrigation regime. There was no significant difference between control and 30% deficit irrigation treatment in WUE. The value of WUE decreased with increasing the drought stress. In 60% deficit irrigation treatment, WUE was 0.366 g fruit dry weight per liter denoting the significant difference between this irrigation treatment and the others. Conclusion: The results of this study showed that jujube trees were susceptible to drought stress in all four stages of growth, especially the period of growth coinciding with flowering, fruit set and early fruit growth. Hence, jujube trees yield and WUE seem to decrease under drought.
Marjan Nekokhoo; Seyfollah Fallah; Rahim Barzegar
Abstract
Introduction: Water resources are very limited for agricultural production. Therefore, optimal use of available water resources and increased water use efficiency in agriculture are necessary. Application of poly ethylene mulch is one of the approaches that can be effective in increasing water use efficiency. ...
Read More
Introduction: Water resources are very limited for agricultural production. Therefore, optimal use of available water resources and increased water use efficiency in agriculture are necessary. Application of poly ethylene mulch is one of the approaches that can be effective in increasing water use efficiency. The water deficient trend is increasing in agricultural lands of the Iran and, on the other hand, the yield components of hull-less seed pumpkin are sensitive to drought stress. Therefore, the aim of this study was to determine the effect of transparent polyethylene mulch on the performance and water use efficiency of hull-less seed pumpkin under different irrigation rates.
Materials and Methods: This experiment was carried out in the central part of Isfahan, Northern Baraan (320 and 32/N, 510 and 52/ E, and 1534 m above sea level) in a randomized complete block design with three replications, during 2016. Treatments consisted of full irrigation+ poly ethylene mulch (M+FW), 0.75% full irrigation+ poly ethylene mulch (M+0.75FW), 0.50% full irrigation+ poly ethylene mulch (M+0.5 FW), and full irrigation without mulch (FW). In April, the cultivation operations include mechanical planting, mulch were done. The spacing of the rows was 150 cm and the spacing between plants was 70 cm. The irrigation was applied until the plant was fully established and then drought stress was begun based on above irrigation treatments. The studied traits were number of fruits per plant, average fruit weight (kg), fruit yield (ton ha-1), number of seeds per fruit, fruit diameter (cm), 1000 grains weight (g), grain yield (kg ha-1), water use efficiency (kg m-3), oil content (%) and oil yield (kg ha-1). Statistical analysis was performed using SAS software and comparisons of the means were made using the least significant difference (LSD) test at the 5% probability level.
Results and Discussion: The highest number of fruits per plant belonged to M+FW treatment (with an average of 3.22) and the lowest was recorded in M+0.5FW treatment (with an average of 2.44). This difference between treatment FW and M+0.75FW can be due to the high moisture under the poly ethylene mulch. The highest fruit weight (3.60 kg) was obtained in M+FW treatments, which had a significant difference with other treatments. The difference weight of fruit in M + FW treatment was 14% compared to FW irrigation treatments. The highest fruit yield (95.72 ton ha-1) belonged to M+FW treatment and the lowest one (79.78) belonged to M+0.5FW treatment. The difference in fruit yield in M+0.75FW compared to FW treatment was 6%, but it was not significant. The number of seeds per fruit in M+0.75FW compared to FW and M+0.5FW treatments showed a difference of 13% and 17%, respectively which they were significant only with M+0.5FW treatment. With increasing drought stress, the amount of photosynthetic assimilate decreased, which reduced the number of seeds per fruit. The highest 1000 grains weight (173.13 g) belonged to M+FW treatment and the lowest one belonged to M+0.5FW (156.18 g). 1000 seeds weight in FW treatment was not significant compared to M+0.75FW treatment. Drought stress during plant development decreased the leaf area index in the plant. Application of plastic mulch reduces the effect of drought stress on leaf growth and its photosynthesis by decreasing water loss by evapotranspiration and transpiration. The difference grain yield between two treatments M+0.75FW with FW was 7% and this difference was not significant. Only significant difference was observed among M+0.5FW treatment with other treatments. The effect of different levels of moisture on water use efficiency was significant at 1% probability level. The highest water use efficiency was recorded in M+0.5FW treatment and the lowest was recorded in FW treatment. The difference in water use efficiency between M+0.75FW with full irrigation (FW) was 0.99 kg m-3, which was significant. Difference in water use efficiency between M+FW and FW was not significant for water use efficiency. The use of plastic mulch reduced water loss throughout the plant growth period and significantly increased water use efficiency. There was a significant difference among M+FW, M+0.75FW and FW for oil content. The highest and lowest oil contents belonged to M+FW and M+0.5FW, respectively. The maximum oil yield (558 kg ha-1) belonged to M+FW and the lowest one (412 kg ha-1) was obtained in M+0.5FW.
Conclusion: Transparent plastic mulch under water stress conditions can reduce the effect of drought stress on hull-less seed pumpkin by preserving water and other beneficial effects, including weeds reduction. Therefore, the use of this type of mulch is recommended for the cultivation of hull-less seed pumpkin in the central areas of the country facing the water crisis.