H. Mirhashemi
Abstract
Introduction: Potential evaporation is the result of the combined effects of several meteorological elements, including air temperature, relative humidity (or vapor pressure for saturation), wind speed, sunshine hours and air pressure. The amount of potential evaporation depends on how these variables ...
Read More
Introduction: Potential evaporation is the result of the combined effects of several meteorological elements, including air temperature, relative humidity (or vapor pressure for saturation), wind speed, sunshine hours and air pressure. The amount of potential evaporation depends on how these variables interact in each climate region. Potential evaporation response of each of these variables depends on the importance that variable plays in the environment. For example, in windy places, the importance of wind speeds in the potential evaporation rate increases relative to places with calm air. By changing each of these meteorological elements, while the rest of the elements react to the given change, the overall effect of these changes and reactions is reflected in the amount of potential evaporation. It is therefore obvious that the potential evaporation response to meteorological variables due to spatial and time variations of these variables is of a complex nature. Materials and Methods: For this study, monthly data of air temperature, air pressure at sea level, wind speed, relative humidity and sunshine hours were used as independent variables and monthly data of evaporation pan at Tabriz Synoptic Station as response or dependent variable. In this study, firstly, the nonlinear and linear relationship between meteorological elements and potential evaporation were identified through Generalized Additive Model (GAM), MARSplines Model, and Generalized Linear Model (GLM), respectively. In the next step, by applying the simplex algorithm on the MARSplines model, the evaporation response gradient levels were determined individually for the meteorological variables. Also, to understand the process of pure evaporation response to each of these variables under different climatic conditions, first three weather conditions based on Tabriz Synoptic Station data were defined in three scenarios as S-1, S-2 and S-3. Then, by controlling and maintaining the meteorological variables under these three scenarios and combining the simplex algorithm with the MARSplines Model, the net evaporation reaction curves for the meteorological variables changes were evaluated. Results and Discussion: The computational results show that in all combinations, the computational error of the GAM model is less than the GLM model. Also considering the significant variables in each model, the combination of temperature, pressure, wind speed and sunshine are considered as the best subset of the effective variables in the distribution of potential evaporation in both models. On the one hand, relative humidity in these two linear and nonlinear models, in combination with other variables, does not show a significant relationship with potential evaporation. The results of the graphs of Splin smoothing components of the GAM model show that the overall effect of temperature on the evaporation is incremental. But the unit amount of this effect increases with increasing temperature. The individual evaporation reaction against air temperature is similar to its combined reaction. It is thus clear that other meteorological variables do not play a significant role in the influence of air temperature on the evaporation gradient. The overall and hybrid effect of air pressure variations on the amount of evaporation is singular and decreasing. Instead, the individual effect of this variable on evaporation is very intense, decreasing, and partly linear. Therefore, the major influence of air pressure on evaporation in the environment is due to the performance of other variables that interfere with the relationship between these two variables. The evaporation hybrid response to wind velocity was also incremental, although the single and nonlinear evaporation response to wind velocity was not significant, but its tendency was to increase its slope with respect to wind velocity changes. Sunny hours also have a net effect on the amount of evaporation. However, the slope of the solitary effect of this variable, like wind speed, is more than its combined effect. Based on the GLM model results, except for relative humidity, the other variables have a significant linear effect on the potential evaporation. Evaporation response to changes in meteorological variables under S-1, S-2 and S-3 scenarios, while accurately determining the interaction of these variables in plotting absolute evaporation, implicitly implying the synergistic role of these variables in determining absolute evaporation. The lowest distance between the absolute values of evaporation under these three scenarios is related to air temperature, which implies less influence of air temperature than the other variables. That is, the effect of each of the meteorological variables on the amount of evaporation depends to a large extent on the relationship of this variable to other meteorological variables, if such a matter is less weighted for temperature. Conclusion: The results of this study show that, except for air pressure, which has an increment-reducing effect on evaporation, other variables have only an incremental influence on evaporation and the intensity of this relationship has changed. This process has resulted in a nonlinear component in the relation of independent variables to evaporation. Since hybrid spline smoothing graphs determine evapotranspiration response to each of the predictor variables by eliminating the effect of other variables, therefore, consideration of the composition of these meteorological variables provides more accurate information on evaporation behavior against environmental changes. Through individually fitting evaporation against these meteorological elements, one cannot find how evaporation works against environmental changes. Comparing individual and combined evaporation responses to meteorological variables, while identifying the net effect of each of these variables, explains why evaporation responses within a given unit differ from changing meteorological variables over different times and locations.
M. Delghandi; S. Broomandnasab; B. Andarzian; A.R. Massah-Bovani
Abstract
Introduction In recent years human activities induced increases in atmospheric carbon dioxide (CO2). Increases in [CO2] caused global warming and Climate change. Climate change is anticipated to cause negative and adverse impacts on agricultural systems throughout the world. Higher temperatures are expected ...
Read More
Introduction In recent years human activities induced increases in atmospheric carbon dioxide (CO2). Increases in [CO2] caused global warming and Climate change. Climate change is anticipated to cause negative and adverse impacts on agricultural systems throughout the world. Higher temperatures are expected to lead to a host of problems. On the other hand, increasing of [CO2] anticipated causing positive impacts on crop yield. Considering the socio-economic importance of agriculture for food security, it is essential to undertake assessments of how future climate change could affect crop yields, so as to provide necessary information to implement appropriate adaptation strategies. In this perspective, the aim of this study was to assess potential climate change impacts and on production for one of the most important varieties of wheat (chamran) in Khouzestan plain and provide directions for possible adaptation strategies.
Materials and Methods: For this study, The Ahvaz region located in the Khuzestan province of Iran was selected.
Ahvaz has a desert climate with long, very hot summers and mild, short winters. At first, thirteen GCM models and two greenhouse gases emission (GHG) scenarios (A2 and B1) was selected for determination of climate change scenarios. ∆P and ∆T parameters at monthly scale were calculated for each GCM model under each GHG emissions scenario by following equation:
Where ∆P, ∆T are long term (thirty years) precipitation and temperature differences between baseline and future period, respectively. average future GCM temperature (2015-2044) for each month, , average baseline period GCM temperature (1971-2000) for each month, , average future GCM precipitation for each month, , average baseline period GCM temperature (1971-2000) for each month and i is index of month. Using calculated ∆Ps for each month via AOGCM models and Beta distribution, Cumulative probability distribution function (CDF) determined for generated ∆Ps. ∆P was derived for risk level 0.10 from CDF. Using the measured precipitation for the 30 years baseline period (1971-2000) and LARS-WG model, daily precipitation time series under risk level 0.10 were generated for future periods (2015-2045 and 2070-2100). Mentioned process in above was performed for temperature. Afterwards, wheat growth was simulated during future and baseline periods using DSSAT, CERES-Wheat model. DSSAT, CERES4.5 is a model based on the crop growth module in which crop growth and development are controlled by phenological development processes. The DSSAT model contains the soil water, soil dynamic, soil temperature, soil nitrogen and carbon, individual plant growth module and crop management module (including planting, harvesting, irrigation, fertilizer and residue modules). This model is not only used to simulate the crop yield, but also to explore the effects of climate change on agricultural productivity and irrigated water. For model validation, field data from different years of observations were used in this study. Experimental data for the simulation were collected at the experimental farm of the Khuzestan Agriculture and Natural Resources Research Center (KANRC), located at Ahwaz in south western Iran.
Results and Discussion: Results showed that wheat growth season was shortened under climate change, especially during 2070-2100 periods. Daily evapotranspiration increased and cumulative evapotranspiration decreased due to increasing daily temperatures and shortening of growth season, respectively. Comparing the wheat yield under climate change with base period based on the considered risk value (0.10) showed that wheat yield in 2015-2045 and 2070-2100 was decreased about 4 and 15 percent, respectively. Four adaptation strategies were assessed (shifting in the planting date, changing the amount of nitrogenous fertilizer, irrigation regime and breeding strategies) in response to climate change. Results indicated that Nov, 21 and Dec, 11 are the best planting dates for 2015-2045 and 2070-2100, respectively. The late season varieties with heat-tolerant characteristic had higher yield in comparison with short and normal season varieties. It indicated that breeding strategy was an appropriate adaptation under climate change. It was also found that the amount of nitrogen application will be reduced by 20 percent in future periods. The increase and decease of one irrigation application (40mm) to irrigation regime of base period resulted in maximum yield for 2015-2045 and 2070-2100, respectively. But, reduction of two irrigation application (80mm) resulted in maximum water productivity (WPI).
Conclusions In the present study, four adaptation strategies of wheat (shifting in the planting date, changing the amount of nitrogenous fertilizer, irrigation regime and breeding strategies) under climate change in Ahvaz region were investigated. Result showed that Nov, 21 and Dec, 11 were the best planting dates for 2015-2045 and 2070-2100, respectively. The late season varieties with heat-tolerant characteristic had higher yield in comparison with short and normal season varieties. It indicated that breeding strategy was an appropriate adaptation strategy under climate change. It was also found that the amount of nitrogen application will be reduced by 20 percent in future periods. The increase and decease of one irrigation application (40mm) to irrigation regime of base period resulted in maximum yield for 2015-2045 and 2070-2100, respectively.
B. Ashraf; A. Alizadeh; M. Mousavi Baygi; M. Bannayan Awal
Abstract
Scince climatic models are the basic tools to study climate change and because of the multiplicity of these models, selecting the most appropriate model for the studying location is very considerable. In this research the temperature and precipitation simulated data by BCM2, CGCM3, CNRMCM3, MRICGCM2.3 ...
Read More
Scince climatic models are the basic tools to study climate change and because of the multiplicity of these models, selecting the most appropriate model for the studying location is very considerable. In this research the temperature and precipitation simulated data by BCM2, CGCM3, CNRMCM3, MRICGCM2.3 and MIROC3 models are downscaled with proportional method according A1B, A2 and B1 emission scenarios for Torbat-heydariye, Sabzevar and Mashhad initially. Then using coefficient of determination (R2), index of agreement (D) and mean-square deviations (MSD), models were verified individually and as ensemble performance. The results showed that, based on individual performance and three emission scenarios, MRICGCM2.3 model in Torbat-heydariye and Mashhad and MIROC3.2 model in Sabzevar had the best performance in simulation of temperature and MIROC3.2, MRICGCM2.3 and CNRMCM3 models have provided the most accurate predictions for precipitation in Torbat-heydariye, Sabzevar and Mashahad respectively. Also simulated temperature by all models in Torbat-heydariye and Sabzevar base on B1 scenario and, in Mashhad based on A2 scenario had the lowest uncertainty. The most accuracy in modeling of precipitation was resulted based on A2 scenario in Torbat-heydariye and, B1 scenario in Sabzevar and Mashhad. Investigation of calculated statistics driven from ensemble performance of 5 selected models caused notable reduction of simulation error and thus increase the accuracy of predictions based on all emission scenarios generally. In this case, the best fitting of simulated and observed temperature data were achieved based on B1 scenario in Torbat-heydariye and Sabzevar and, A2 scenario in Mashhad. And the best fitting simulated and observed precipitation data were obtained based on A2 scenario in Torbat-heydariye and, B1 scenario in Sabzevar and Mashhad. According to the results of this research, before any climate change research it is necessary to select the optimum GCM model for the studying region to simulate climatic parameters.