Irrigation
M. Goodarzi; F. Abbasi; A. Hedayatipour
Abstract
IntroductionThe lack of water resources and increase in water demand are among the effective factors in the imbalance of the water resources in each region, and it is necessary to manage the proper use of available water resources in all activities. Water in the agricultural sector is one of the main ...
Read More
IntroductionThe lack of water resources and increase in water demand are among the effective factors in the imbalance of the water resources in each region, and it is necessary to manage the proper use of available water resources in all activities. Water in the agricultural sector is one of the main factors of production, which should be conveyed by irrigation systems to the field level and made available for the plant roots. The necessity of macro-planning in water management and consumption imposes a comprehensive study of the amount of water consumed in the agricultural sector. Hence, this study was conducted with the objective of directly measuring and field-assessing the applied water, water productivity, and water footprint associated with the primary crops cultivated in Markazi Province, all managed by local farmers.MethodologyFor this purpose, 141 farms were selected in the major production areas of the main agricultural and horticultural crops of Markazi province with the coordination of the Agricultural Jihad centers. Then, the volume of water applied was measured without interfering in the irrigation scheduling of the users. To do so, first, the flow rate of the water source (canal, well, aqueduct or spring) was measured with a suitable device (flume and meter) in each of the selected farms. Then, by carefully monitoring the irrigation schedule of the farm, including the time of each irrigation, the number of irrigation throughout the year, as well as measuring the area under crop cultivation, the amount of water used by the crop was measured for each of the selected farms during the season. Also, based on the measured data, the amounts of blue, green and gray water footprints were determined for each of the examined crops. For this purpose, the blue, green and gray water footprints of different crops were calculated using the framework provided by Hoekstra and Chapagain (2008), and Hoekstra et al., (2011).Results and DiscussionThe irrigation intervals in the studied fields varied between 3 and 15 days with an average of 8 days and the average irrigation depth varied between 26.2 and 99 mm with an average of 67.8 mm in different crops. The results showed that the average volume of applied water for the studied crops in Markazi province was 10782 cubic meters per hectare. Also, the minimum and maximum amount of applied water for the evaluated crops was as follows: barley 3783 and 7232, alfalfa 10382 and 19797, beans 8280 and 17840, watermelon 5333 and 7174, walnuts 4420 and 29600, almonds 3850 and 13932, peaches 6872 and 17727, cherries 7050 and 14645, pomegranates 7156 and 20790, and grapes 5937 and 18168 cubic meters per hectare. Furthermore, the average value of irrigation water efficiency index and water footprint was as follows: barley 0.46 and 1642, alfalfa 0.92 and 700, bean 2924 and 0.24, watermelon 9.37 and 117, walnut 0.1 and 6706, almonds 0.16 and 6857, peach 2.48 and 242, cherries 0.73 and 875, pomegranates 1.33 and 636, and grapes 11.2 and 322. Based on the obtained results, the average total water footprint index was equal to 2102 cubic meters per ton. On average, the almond with a water footprint of 6857 cubic meters per ton had the highest share in allocating the water footprint in the crop production of the province. Whereas, the lowest water footprint related to the watermelon with a water footprint of 117 cubic meters per ton. he average values of the irrigation application efficiency index, irrigation water productivity, and water footprint for the examined farms were 72.5%, 1.79 kg/m3, and 2,102 m3/ton, respectively. In summary, the results indicate that the combined volume of irrigation water and beneficial rainfall in the irrigated fields within Markazi Province surpasses the actual water demand of the crops. This underscores the substantial impact of irrigation management on water utilization in the region.ConclusionOn average, the total volume of irrigation water and effective rainfall in irrigated fields and gardens in Markazi Province is more than the actual water requirement of the plant. In general, the results showed that irrigation management has a great impact on the amount of water use in the region. Based on the obtained results, considering that most of the farms and gardens receive water in an intermittent manner, in principle, no special attention is paid to the need for water and even effective rainfall, and the amount of water availability has the greatest impact on water consumption. Therefore, in order to reduce water consumption and improve water efficiency, it is suggested to manage the delivery of water to farmers during the season and according to their crop water needs. Also, the results of the water footprint can be used to improve water resource policies at the province level, land use studies, cropping pattern modification, and environmental sector policies.
kourosh majdsalimi; b. salavatian; e. amiri
Abstract
Introduction: Designing and management of sprinkler irrigation systems depend on the situation and location of its implementation and often rely on professional and long-term tests (9). Having a good irrigation system depends on knowledge of the relationship between soil, water, plants, irrigation scheduling, ...
Read More
Introduction: Designing and management of sprinkler irrigation systems depend on the situation and location of its implementation and often rely on professional and long-term tests (9). Having a good irrigation system depends on knowledge of the relationship between soil, water, plants, irrigation scheduling, the required amount of irrigation water to the water-holding capacity of soil, climate and plant growth (6).The less use of sprinkler irrigation systems and less performed research projects in the Guilan province, lack of correct design parameters due to shortage of the required parameters for local and regional planning, has led to reliance on charts and tables. Therefore, planning water resources cannot be performed well and with accurate details. According to many researchers (8), the technical evaluation should be a regular and short-term process to review the problems and possible performance of irrigation systems. Merriam and Keller (10) defined the assessment of an irrigation system analysis, based on field measurements in real terms during the normal work of the system. Therefore, to develop these systems over the next few years, it is essential to evaluate the use of irrigation systems and review the performance of existing problems and utilizing the results to improve it. The aim of this study was to assess the current status of implemented irrigation systems in the tea plantations of Guilan and evaluate their performance.
Materials and Methods: In this study, six classic sprinkler irrigation systems in tea fields of Guilan province were evaluated during two years. Sprinkler irrigation systems of semi-portable, solid-set and solid-set (hand-move sprinkler) were selected randomly. To evaluate this irrigation systems, Christiansen’s uniformity coefficient (CU), distribution uniformity (DU), potential application efficiency of low-quarter (PELQ) and application efficiency of low-quarter (AELQ) in the form of trial blocks were estimated by measuring pressure fluctuations which were applied to the entire system. Using irrigated area and irrigation water depth, adequacy of irrigation curve, deep percolation losses and spray losses were determined on the basis of existing relationships.
Results and Discussion: Average values of CU, DU, PELQ and AELQ for 6 tea fields were 65, 52, 44 and 44 percent, respectively. Application efficiency in all irrigation systems, Christiansen’s uniformity coefficient and distribution uniformity were lower than recommended values in the references. Merriam and Keller (11) reported the allowable range for potential application efficiency of low-quarter between 65 to 85 percent. With respect to irrigation less than the actual water requirement of the plant in tea fields, AELQ was equal with PELQ. Untechnical design and implementation of irrigation systems, particularly poor operating pressure and economic problems were detected as the main reasons for the low PELQ. Simultaneous use of sprinklers with different specifications and models, old irrigation systems, water leakage from valves and other equipment, practically change the pressure and flow rate, which were the main reasons for the decrease in uniformity of water distribution and application efficiency of low-quarter. According to Cobban (4) uniformity coefficient of sprinkler irrigation systems were reported between 31 to 55 percent in Tanzania tea fields and in other reports were between 58 to 72 percent (7), which was due to poor design, long spacing of sprinklers and high speed wind. Christiansen’s uniformity coefficient and distribution uniformity of low-quarter in ED, WB & EP systems were lower than recommended values by Merriam and Keller (%81≥CU≥87% & %67≥DU≥80%)(10). In spite of the little losses in deep percolation, irrigation adequacy of these systems was relatively low and unacceptable. In such circumstances, only about 20 to 38% of irrigated area in WA and CK systems, respectively received the required water or more, according to lack of soil moisture (required irrigation depth). The main reason was low uniformity of water distribution in irrigation systems which was described previously. Evaluated spray losses in irrigation systems was variable between 4.8 to 13 percent. The losses obtained in irrigation systems in tea fields in comparison with the values 2.6 to 42.4 which were obtained in other regions of the country were less by (1, 3, 5 and 12) due to low wind speed and high relative humidity (2) as the main reasons.
Conclusion: Average values of CU, DU, PELQ and AELQ for 6 tea fields were 65, 52, 44 and 44 percent, respectively that were lower than recommended values in the references. The results showed that old irrigation systems in tea fields are not in good functional status due to untechnical design and implementation, operation, exploitation and inappropriate maintenance (due to economic problems and lack of farmer’s knowledge on irrigation). To improve the performance and efficiency of irrigation systems in the tea fields, detailed information are recommended, to design and implement with detailed information accomplished by regional companies. Moreover, the use of solid-set (hand-move sprinkler) sprinkler irrigation instead of semi-portable with manual handling (aluminum pipes), operation of irrigation groups and promoting farmers' knowledge about the principles of proper the scheduling and management, operation and maintenance of irrigation systems are very effective to improve the performance indices.
M. Moayeri; E. Pazira; H. Siadat; F. Abbasi; hossein dehghani
Abstract
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern ...
Read More
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern part of the lands downstream of the Karkheh River Dam, where summer maize is planted in 75 cm spaced rows and irrigated by furrows. During the two years of the research and considering the prevailing diversity of the sources of irrigation water (Based on the ratio), seven irrigated field units were selected as follows: two units using groundwater (wells), three units receiving surface water from irrigation network, one unit taking water directly from the river, and one unit using network and well water. In each irrigation unit, three farms were chosen with regard to irrigation and farming management. In the field trials, some physical and chemical properties of the soil, soil test for nutrition (NPK) availability, the volume of inflow applied to the field by the farmer and runoff water in each irrigation, and total crop yield was measured and maize evapotranspiration was calculated. Then, the irrigation and rain water productivity (WPI+R), water application efficiency (WAE), and maize crop water productivity (CWP) was determined for each field. Based on the two years results, the average yield of maize kernel, WPI+R , WAE, and CWP values were, 4844 kg/ha, 0.38 kg/m3, 38.6,%, and 1.01 kg/m3, respectively. The results and observations made during this study indicated that the most important reasons for low water productivity were inadequate knowledge of farmers in irrigation, plant nutrient deficiencies, and improper crop management practices.