Soil science
Z. Sokhanvar Mahani; N. Boroomand; M. Sarcheshmeh Pour
Abstract
IntroductionPhosphorus (P) is one of the most important elements necessary for plant growth and production of agricultural products. In calcareous soils, phosphorus deficiency is a general issue due to high pH, high soil calcium carbonate content, lack of organic matter and moisture. Phosphorus absorption ...
Read More
IntroductionPhosphorus (P) is one of the most important elements necessary for plant growth and production of agricultural products. In calcareous soils, phosphorus deficiency is a general issue due to high pH, high soil calcium carbonate content, lack of organic matter and moisture. Phosphorus absorption capacity depends on different soil reactions such as: adsorption, sedimentation, stabilization and release. The speed and amount of plant available P depends on the soil reactions. Studying the kinetics of P release from soil is a good indicator to check the status of P uptake by plant. The kinetics of P release in soils is a subject of importance in soil and environmental sciences. The aim of this research was to investigate the kinetics of P release and derive the most suitable equation to describe the release of P from a calcareous soil when subjected to the acidification of rock phosphate and the addition of vermicompost. Materials and MethodsIn order to investigate the ability of acidified rock phosphate and vermicompost in P release, an experiment was conducted with 2 replications on a light-textured soil with low OC and Olsen-P (1.2 mg/kg). One hundred grams air dried calcareous soil was transferred into special containers and 5 treatments including: 1- control (soil), 2- rock phosphate, 3- acidified rock phosphate (20 CC nitric acid 0.1 N and 5 g rock phosphate), 4- vermicompost, and 5- acidified vermicompost (20 CC nitric acid 0.1 N and 5 g vermicompost) were applied. The treatments incubated two weeks in 20±2℃ temperature. The Kinetics of P release was studied by adding 20 mL of 0.5N NaHCO3 to, one gram of air dried treatments. Extraction times were considered to be 0.25 h to 256 h (in 11 times) based on the time of adding the NaHCO3 extractant until filtering. After adding the extractant, the samples were shaken and centrifuged. After filtering, the concentration of released P in samples were determined by spectrophotometer (Model: CE 292 Series2, ultraviolet). For higher accuracy in the measurements, acid-washed containers were adjusted based on the amount of soil moisture which was dried in the oven (105℃). Finally, the P release data were fitted to different kinetic equations. The effect of different fertilizer treatments on P release in specified times and then kinetics parameters were investigated and compared with the control. Results and DiscussionAddition of acidified and non acidified rock phosphate and vermicompost increased the amount and speed of P release in the calcareous soil. Six kinetic equations were fitted to describe the release of P in the period of 0.25 h to 256 h from the soil to evaluate the effect of the treatments. The highest release of P was in vermicompost and acidified rock phosphate treatment, which were an organic fertilizer and a source for preparing phosphate fertilizers. To describe the release rate, kinetic equations were used. The best equations were chosen by highest coefficient of determination (R2) and the least of standard error (SE). The zero, first, second order equations could not describe the release of P in the studied calcareous soil. The R2 value decreased from the zero to second order equation. The simplified Elovich equation described well the release of P from the soil with the average R2 of 0.79 and with the average SE of 0.4. Comparison of the average effect of the studied treatments with the control showed that the acidifed vermicompost and rock phosphate treatments increased the capacity and speed of P release compared to the control. On the other hand, acid addition has increased the capacity and speed of P release in the calcareous soil. ConclusionThe findings indicated an initial rapid release of P, which then decreased over time. Notably, the application of vermicompost and the acidification of the soil with rock phosphate resulted in a pronounced and accelerated release of P. Generally, organic fertilizer treatments exhibited a higher release of P compared to chemical fertilizer treatments. This observation is in accordnce with the findings of the data presented by Ghorbanzadeh et al. (2009), who explored the P release potential of bone meal. Their data demonstrated that the acidification of bone meal accelerated and enhanced P release. To further enhance the practical relevance of these results, it is recommended to conduct this research in the presence of plants.
B. Kamali; A. Mahdavi; A. Sotoodehnia
Abstract
Introduction: Over application of phosphorous-containing fertilizers is common among the farmers. Excess amounts of phosphorus can potentially cause more phosphorous losses through water flow on the soil surface or leaching into the soil profile. The ability of highly phosphorus-fertilized soils to maintain ...
Read More
Introduction: Over application of phosphorous-containing fertilizers is common among the farmers. Excess amounts of phosphorus can potentially cause more phosphorous losses through water flow on the soil surface or leaching into the soil profile. The ability of highly phosphorus-fertilized soils to maintain excessive amounts of phosphorus and prevent losses largely depends on the phosphorus adsorption capacity of the soil. The purpose of this study was to investigate and compare phosphorous adsorption isotherms in soil samples of four agricultural areas located in Qazvin plain and determine the most appropriate equation to describe the equilibrium adsorption in the studied samples. Identification of the most accurate model of adsorption kinetics using the investigated kinetics equations in one of the soil samples was another objective of this study. The linear regression analysis and correlation between physical and chemical properties of different soils with adsorption coefficients of Langmuir equation was also investigated. Based on mentioned points, the results of this study can help to increase the availability of applied phosphorous for plants, reduce phosphorous losses and proper management of phosphate fertilizers consumption in the study areas.
Materials and Methods: In order to study the soil properties and phosphorous adsorption, soil samples of four villages included Zaaferan (A), Koochar (B), Mehdi Abad (C) and Kamal Abad (D) were taken from 0 to 30 cm depth and stored in plastic bags after air drying. Batch experiments using a standard method recommended by the SERA-IEG17 group were used to determine the amount of phosphorous adsorbed to soil particles. The steps to perform the equilibrium were as follows:
1- Dry soil samples were crushed and passed through a 2 mm sieve.
2- One gram of the soil sample was placed in a 60 ml container.
3- 0.01 M CaCl2 solution was prepared and different concentrations of phosphorous including 0, 5, 10, 15, 20, 30 and 80 mg/l were created by adding certain amounts of KH2PO4 to this solution. 25 ml of these solutions were added to each soli sample to give a 1:25 soil to solution ratio and three drops of chloroform were added to each container to prevent microbial activity.
4- The suspension samples were placed in a shaker machine (250 rpm) at 25°C for 24 hours.
5- Then, the samples were removed from the shaker and allowed to settle for one hour and then passes through a fine filter (Mesh 42).
6- Phosphorous concentration was measured by the molybdate-vanadate method followed by spectrophotometric determination at 470 nm.
7- The amount of phosphorous adsorbed in each soil sample was calculated from the difference of the initial and secondary concentration values.
The adsorption kinetics experiment was similarly performed, with the exception that one soil sample with average adsorption value (sample C) was selected and the phosphorous solution at a concentration of 20 mg/l added to the soil samples. Phosphorous contact times with soil were considered as 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48 and 72 hours. In this study, using CurveExpert 1.4 software and by matching Pseudo-first-order, Pseudo-second-order, Intra-particle diffusion, Kuo and Lotse (1974), Barrow and Shaw (1975) and Panda et al. (1978), equations on the data obtained from kinetics adsorption experiments, and the coefficients were estimated in these equations (adsorption parameters). Furthermore, by calculating the coefficient of determination (R2) of these equations and the standard error of the estimate (s), the most appropriate and accurate model of phosphorous adsorption kinetics for the soil sample was determined. Similarly, from Langmuir, Freundlich, Linear and Van Huay equations, the most appropriate isotherm was determined for estimating phosphorous equilibrium adsorption in the studied areas. Also, correlation and linear regression analysis were performed to determine the relationship between the physical and chemical parameters of the soils and the coefficients of Langmuir isotherm using Minitab software.
Results and Discussion: According to the results, the highest coefficient of determination (R2) and the lowest standard error of the estimate (s) for all four samples were related to Langmuir, Freundlich, Van Huay and Linear equations, respectively. Therefore, in this study, Langmuir isotherm was the most accurate model for estimating equilibrium adsorption of the phosphorus to the soils of the study areas. However, the Freundlich and Van Huay equations also showed a good correlation with the laboratory data. Comparison of the results of various studies in these fields showed that the type of isotherm corresponds to phosphorous adsorption data in each experiment is related to the physical and chemical properties of soil and adsorption sites. The amounts of maximum phosphorous adsorption capacity (qm coefficient in Langmuir equation) for the soil samples A, B, C and D were 0.49, 0.31, 0.42 and 0.4 mg/g, respectively. In kinetic study, Although, Kuo and Lotse, Barrow and Shaw and Panda et al. equations had a coefficient of determination (R2) above 0.95 ; the highest accuracy was related to the Kuo and Lotse equation with R2 of 0.974. The coefficients of this model included k (reaction rate) and m (constant coefficient) were 0.007 l/gr.min and 13.2, respectively. Based on the results of this study and other adsorption studies, soil physical and chemical properties including EC, PH, soil calcium content, clay content and porosity were among the parameters affecting adsorption rate and the type of the most accurate equation of adsorption estimation. Considering the soil properties that were most correlated with adsorption coefficients, it can be concluded that the high percentage of clay and low levels of organic matter and soluble calcium are the main causes of the high phosphorous adsorption in soil. The correlation coefficients (r) of these three soil parameters with the maximum adsorption capacity (qm) were 0.61, -0.97 and -0.92, respectively.
Conclusion: According to the results of this study, Langmuir was the most accurate isotherm model and the soil sample of Zaaferan area has the most adsorption capacity with qm of 0.49 mg/g, which is related to low levels of soil organic matter. Therefore adding organic matter to the soils can be used as a solution to increase cultivated plants access to applied phosphorous and reduce phosphorous adsorption into the soil and thus reduce losses and leaching of excess phosphorous in the profile or soil surface.
Ahmad Farrokhian Firouzi; Hosein Hamidifar; Mohammad javad Amiri; Mehdi Bahrami
Abstract
Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats ...
Read More
Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated.
Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004). The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height). Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1) and pore velocity (pressure head of 2 and 10 cm) on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column. The response curve was followed by analyzing the concentration history of Cl-1 in the effluent. Then, the influent was switched back to the background solution to thoroughly elute the tracer. Following the tracer test, a modified magnetite nanoparticles with sodium dodecyl sulfate was introduced into the column and the nanoparticle breakthrough curves were obtained by measuring the concentration history of total Fe in the effluent. Total iron concentration was analyzed with a flame atomic-absorption spectrophotometer.
One site and two site kinetic attachment-detachment models in HYDRUS-1D software were used to predict the nanoparticles transport. Also parameters of model efficiency coefficient (E), root mean square error (RMSE), geometric mean error ratio (GMER), and geometric standard deviation of error ratio (GSDER) were used to determine the accuracy of the models.
Results and Discussion: SEM measurements demonstrated that the particle size of nanoparticles was about 40-60 nm. The hydrodynamic dispersion coefficient (D) for each medium was obtained by fitting the classic 1-D convection–dispersion equation (CDE) to the experimental breakthrough data using the CXTFIT code (STANMOD software, USDA). The relative concentration of nanoparticles in comparison with chloride in the collected effluent from soil columns were much lower indicating a strong retention of nanoparticles in studied porous media, thereby attachment, deposition and possibly straining of nanoparticles.
Modeling results showed that in all sites of both models (one site and two-site kinetic attachment-detachment models), attachment was rapid and detachment was slow. These attachment kinetic sites may be because of consistent charges of minerals with attachment. Therefore, considering to same attachment-detachment behavior in two sites of two-site kinetic model, it is concluded that the one site kinetic model had eligible estimation of nanoparticles breakthrough curve in the studied sandy soil columns lonely. Efficiency of one site and two-site models varied from 0.761 to 0.851 and 0.760 to 0.846 respectively that indicated both models had good estimation of nanoparticles transport in the sandy soil. Also, logarithmic form of nanoparticles breakthrough curve showed that both models had good estimation of all ranges of breakthrough curve containing its tail.
Conclusion: Investigation of transport modeling of modified magnetite nanoparticles with Sodium dodecyl sulfate in a saturated sandy soil showed that decreasing the nanoparticles concentration would enhanced the mobility of modified magnetite nanoparticles, but increasing of pressure head had no effect on nanoparticles mobility. The results of models evaluation showed that both one site and two-site models had eligible estimation of nanoparticles transport in the studied sandy soil columns.