Irrigation
M. Koohani; J. Behmanesh; V.R. Verdinejad; M. Mohammadpour
Abstract
IntroductionLand-use changes and development of irrigated agricultural lands are very important factors that affect natural resources such as the quantity and quality of water resources and the environment. Land use change is attributed to two major processes. The first process is the change in land ...
Read More
IntroductionLand-use changes and development of irrigated agricultural lands are very important factors that affect natural resources such as the quantity and quality of water resources and the environment. Land use change is attributed to two major processes. The first process is the change in land cover, which is related to the expansion or limitation of the area of land used (such as pasture, agricultural or urban land). The second process is a change in land cover management type (for example, changes in irrigation, fertilizer use, crop type, harvesting methods or surface impermeability). Recently the Urmia lake has been accompanied by a reduction in water resources and the continuation of this process can completely cause to dry Urmia Lake. One of the approvals of the Iranian government after the formation of the National Working Group for the Lake Urmia restoration program was to prevent the development of agricultural lands in this watershed since 2014. Unfortunately, no serious and effective action has been taken in this case yet, and this process has progressed to cause conflicts in this region. Game theory is one of the most important methods used in modeling and analyzing water and environmental resources conflicts.Materials and MethodsIn the present study, using GMCR + software, the water resources conflicts arising from agricultural land development has been analyzed. In this conflict, by accurately identifying the set of decision-makers and their strategies in the conflict process (Regional Water Company, Agriculture Organization, Justice, and Profiteering Farmers), the model was executed with 4 players, 6 options, and 64 states. Players' performance was assessed once as ideal behavior (importance to the environment, sustainable development, and preference of long-term over short-term interests) and then as the use of completing a questionnaire. Then 4 states in the ideal behavior as equilibrium states and 7 states in the condition of using the questionnaire results were extracted as equilibrium states. The conflict was also examined in the coalition state of 3 government organizations (Regional Water Company, Agriculture Organization, and Justice Organization). Finally, the most probable states of equilibrium in the game results were identified.Results and DiscussionIn the discussion concerning equilibrium points, it is crucial to consider that for resolving the dispute and the proposed solution, we need to examine not only the stability of these points but also the state's priority from the perspective of stakeholders. Based on the discussions and the output results of the conflict model using the GMCR+ model, the optimal response and conflict resolution can be found in scenario 12. This scenario holds a high priority for three key players: the Agricultural Organization, the Regional Water Company, and the Justice Department. However, it doesn't share the same level of priority with the Profiteering Farmers. The reason for this divergence lies in the preference for personal gain and profit pursuit over the broader interests of the entire catchment area.ConclusionIn recent years, despite the imposed restrictions, the Urmia Lake Basin has witnessed a notable increase in the cultivation of water-intensive crops. This shift has transformed arid lands into irrigated ones and altered agricultural areas into residential zones. According to the principles of the tax evasion game, when land development carries no moral or financial consequences for profit-driven farmers, and they are aware that regulatory institutions will not commit excessive resources to prevent and effectively combat the expansion of illegal farmlands, Profiteering Farmers will consistently engage in unauthorized development under any conflict scenario. In light of the revenue potential of this situation and the opportunity to enhance one's social standing, Profiteering Farmers will persist in unauthorized development regardless of the prevailing conflict circumstances. The findings underscore the critical role of the Regional Water Company and the Agricultural Organization. These entities must proactively employ their legal capacities to impede and deter the expansion of agricultural lands. Additionally, the Justice Organization assumes primary responsibility as a crime prevention factor, while its secondary role as a judicial enforcer within this conflict situation appears fitting. Therefore, all situations are stable for Profiteering Farmers. It seems that creating a platform and conditions in which Profiteering Farmers do not develop agricultural land themselves or do not develop land due to the protection of government institutions, can be very thoughtful and effective.
A. Emadi; Ramin Fazloula
Abstract
Introduction: Population growth and water resource constraints make optimal operation of available resources important. Considering the utility of the stakeholders and the physical limitations of the problem, the optimal allocation of water resources is, therefore, necessary. Among the proposed strategies, ...
Read More
Introduction: Population growth and water resource constraints make optimal operation of available resources important. Considering the utility of the stakeholders and the physical limitations of the problem, the optimal allocation of water resources is, therefore, necessary. Among the proposed strategies, the game theory is one of the methods used to improve water resources management. Also, in order to achieve the optimal and fair allocation, a model and method should be selected in accordance to the conditions. Our main purpose was to study the optimal water allocation from the dam reservoir by increasing the overall profitability of the system through forming a coalition as well as increasing the profits of each water users participated in the coalition. Increase in profits will be possible without the need for any additional costs and only with the change in the operation management. Integration of Genetic Algorithm optimization model with Shapley Crisp game theory can be considered as the innovation of this research work applied to optimally allocate water from Shahid Rajaee Dam reservoir to downstream needs.
Materials and Methods: In this study, a new methodology based on crisp Shapley games is developed for optimal water allocation from the dam reservoir. First, the standard operation policy was used to determine the volume of available water. Then, the optimization model of the Genetic Algorithm was employed for initial allocation considering an equity criterion. The Crisp Cooperative Game Theory was then applied for secondary optimization of water allocation among stakeholders. The possible coalitions for increasing the overall system profits were formed using the Shapley method and the profits of each coalition were then calculated. Finally, the Shapley's value relationship was used to reassign profits to players in order to encourage them to participate in the grand coalition. This study was carried out on Shahid Rajaee dam located in 45 kilometers southwest of Sari in Tajan basin. This dam mainly supplies agricultural and drinking water. Rice and citrus production were the largest and second largest water consumer, respectively.
Results and Discussion: In this study, the monthly amount of water released from Shahid Rajaee Dam reservoir was determined by using standard utilization policy and then the amount of initial allocation to downstream dam needs was calculated using genetic algorithm optimization model. Then, by using the players' profit coefficient and the amounts allocated from the implementation of the genetic algorithm model, the initial profit values were calculated for each stakeholder. Employing the Shapley Crisp method, the amounts of water allocated to each player and their corresponding economic benefits were obtained for the grand and two-player coalition. The results showed that the grand coalition had more benefits than the binary coalitions as well as the initial allocation. At this step, the Shapley value relationship was used to reallocate the profits among the players. After allocating water to three participants based on different coalitions, since the fair share of each was obtained in the first step, payments must be made between the players in order to be fair. The player who receives more water share determined at the first step must pay money to other players receiving water less than their fair share. The method proposed for the 18 years statistical period was used to allocate water among the stakeholder. According to the findings, the formation of a grand coalition increases overall system profit without the need for any additional costs and only with revising the operation management.
Conclusion: In this research, an integrated model of optimization was developed using Genetic Algorithm and Shapley Crisp Cooperative Game Approach. The amount of financial payments among the stakeholders in the coalition was also determined based on the Shapely value. Constituent coalitions show the management impacts on water policy and demand management in the studied area. The best results were obtained when players formed a grand coalition. In other words, by participating in the grand coalition and reallocation of water and profits among players, the overall system profits will increase by 10 % and the profits of players cultivating rice, citrus and other agricultural products will rise by 6, 16 and 15 %, respectively, as compared with the condition the players do not participate in the grand coalition and water allocation is only done using the Genetic Algorithm. Therefore, the water allocation should be based on a grand coalition requiring the cooperation and participation of all stakeholders. The results indicate that this method can be applied to allocate resources equitably. It can be also used to solve social conflicts among decision-makers.