M.M. Heidari; S. Kouchakzadeh
Abstract
Introduction: Determination the hydraulic performance of an irrigation network requires adequate knowledge about the sensitivities of the network structures. Hydraulic sensitivity concept of structures and channel reaches aid network operators in identifying structures with higher sensitivities which ...
Read More
Introduction: Determination the hydraulic performance of an irrigation network requires adequate knowledge about the sensitivities of the network structures. Hydraulic sensitivity concept of structures and channel reaches aid network operators in identifying structures with higher sensitivities which will attract more attention both during network operation and maintenance program. Sluice gates are frequently used as regulator and delivery structures in irrigation networks. Usually discharge coefficient of sluice gate is considered constant in the design and operation stage. Investigation of sensitivity of offtakes and cross-regulators has carried out by various researchers and some hydraulic sensitivity indicators have been developed. In the previous researches, these indexes were developed based on constant coefficient of discharge for free flow sluice gates. However, the coefficient of discharge for free flow sluice gates depend on gate opening and the upstream water depth. So, in this research, some hydraulic sensitivity indicators at structure based on variable coefficient of discharge for free flow sluice gates were developed and they were validated by using observed data.
Materials and Methods: An experimental setup was constructed to analyses the performance of the some hydraulic sensitivity. The flume was provided with storage reservoir, pumps, electromagnetic flowmeter, entrance tank, feeder canal, delivery canals, offtakes, cross-regulators, collector reservoir, piezometric boards. The flume is 60.5 m long and the depth of that is 0.25 m, of which only a small part close to offtake and Cross-regulators was needed for these tests. Offtakes and Cross-regulators are free-flowing sluice gates type. Offtakes were located at distances 20 m and 42.5 m downstream from the entrance tank, respectively. and, Cross-regulators were located 2 m downstream from each offtakes. The offtakes are 0.21 m and Cross-regulators are 0.29 m wide. The upstream and downstream water levels at gates were measured with piezometer taps. There is a collector reservoir downstream of each delivery canal that was equipped with a 135 V-notch weir as a measuring device. The flow was provided by a pump having maximum capacity 35 lit/s, and was measured by an electromagnetic flowmeter of 0.5% accuracy. The suction pipe of the upstream pump was connected to the storage reservoir and its discharge pipe delivered the water to an entrance tank located at the upstream side of the flume. The entrance take was equipped with a turbulence reduction system. Measured water entered to feeder canal and, after adjusting water depth by Cross-regulators, it moved to offtakes and the brink of the feeder canal. Underneath the downstream end of the feeder canal and delivery canals, a tank was installed to collect the water. Water accumulated at the collector tanks was pumped to the storage reservoir by using a pump to complete the water circulation cycle.
Results and Discussion: Discharge coefficient is the most important parameter that is effect on hydraulic indicators sensitivity. Therefore, coefficient of discharge for free flow sluice gates determined based on experimental data. Sluice-gate discharge coefficient is a function of geometric and hydraulic parameters. For free flow, it is related to upstream depth and gate opening. In this study, analytical relationships for various sensitivity indices for channel reach were developed, and the performance of the proposed relationships was verified with experimental data compiled during this research. It was shown that using constant discharge coefficient yields average error in the calculated sensitivity of the water depth upstream regulator to the inlet flow, and average error of calculated reach sensitivity indicator, as 16.6% and 5.8%, respectively. While those values for variable coefficient was 5.7% and 1.9%, respectively. Also, for 20% variation in reach inflow, the variable coefficient improved the calculated mean flow depth error upstream of a regulator drastically, i.e. the mentioned error using constant coefficient was 17% while that of variable one was 4.3%
Conclusion: In this research, Analytical relationships based on using variable discharge coefficient for Three sensitivity indicators for a canal reach, i.e. reach sensitivity indicator of water depth, reach sensitivity indicator for conveyance and delivery developed. Comparing reach canal sensitivity indicators and the structural sensitivities, i.e. sensitivity of delivery of offtake to absolute water depth deviation and water depth sensitivity to the discharge for regulator with experimental data, showed good agreement. Hence, the technique proved to be reliable in providing what is necessary for practical canal.
S. Riahi; A.R. Vatankhah
Abstract
Introduction: Side weir structures are extensively used in hydraulic engineering, irrigation and environmental engineering, and it usually consists of a main weir and a lateral channel. Side weirs are also used as an emergency structure. This structure is installed on one side or both sides of the main ...
Read More
Introduction: Side weir structures are extensively used in hydraulic engineering, irrigation and environmental engineering, and it usually consists of a main weir and a lateral channel. Side weirs are also used as an emergency structure. This structure is installed on one side or both sides of the main channel to divert the flow from the main channel to the side channel. Lateral outflow takes place when the water surface in the main channel rises above the weir sill. Flow over a side weir is a typical case of spatially varied flow with decreasing discharge. There have been extensive studies on side weir overflows. Most of the previous theoretical analysis and experimental research works are related to the flow over rectangular side weirs in rectangular main channels. In the current study, the flow conditions over a trapezoidal side weir located in a rectangular main channel in subcritical flow regime is considered.
Materials and Methods: The experiments were performed in a rectangular open channel having provisions for a side weir at one side of the channel. The main channel was horizontal with 12 m length, 0.25 m width, and 0.5 m height, and it was installed on a frame; lateral channel that has a length of 6 m, width of 0.25 m, and height of 1 m. It was set up parallel to the main channel; walls and its bed were made up of Plexiglas plates. The side weir was positioned at a distance of 6 m from the channel’s entrance. A total of 121 experiments on trapezoidal side weirs were carried out.
Results and Discussion: For trapezoidal side weir, effective non-dimensionnal parameters were identified using dimensional analysis and Buckingham's Pi-Theorem. Finally, the following non-dimensional parameters were considered as the most effective ones on the discharge coefficient of the trapezoidal side weir flow.
in which Fr1= upstream Froude number, P= hight of the trapezoidal side weir, y1= upstream water depth, z=side slope of the trapezoidal side weir and T=top flow width of the trapezoidal side weir. Water surface profiles were measured along the weir crest, the main channel centerline, and far from the weir section. Different elevations in water surface profile depend on the upstream Froude number in the main channel; depth differences in low Froude numbers are at minimum values, and in high Froude numbers are at maximum amounts. The water surface level along the crest drops at the entrance of the side weir to the first half of the side weir; and it has been attributed to the side weir entrance effect at the upstream. Afterwards, the water level rises towards the downstream of the weir. According to the experimental results, measurements of the water in the centerline of the main channel are reliable and water surface drop is negligible. According to the parameters affecting the discharge coefficient for each value of z, discharge coefficient equations were developed with acceptable accuracy such that the effects of this parameter were shown separately. Finally, the general equation was proposed. The general functional form for discharge coefficient is presented as follows where the effect of the side slope parameter, z, is also considered.
The mean and maximum percentage errors of the discharge coefficient computed using the proposed equation are as 2.6% and 11.5% , respectively.
Conclusion: In this study, the characteristics of trapezoidal side weir overflows in subcritical flow regime were discussed. For this purpose, experimental data related to the water surface profile of the side weir and discharge coefficient were collected and analyzed. The results showed that the most efficient section for measuring water surface profile is located at the center line of the main channel. It was found that for trapezoidal side weir, the discharge coefficient depends on the Froude number, the ratio of crest height to initial depth, the overflow length to initial depth, and the side slope of the weir. In this study, conventional trapezoidal weir theory has been used in order to evaluate the discharge coefficient and provide side weir discharge equation. For this purpose, three reference depths were considered for conventional weir, and for each depth an equation was developed for the discharge coefficient. Comparison between predicted values and experimental data showed that average flow depth results in accurate outcomes for assessing the discharge coefficient. The average value of error for discharge coefficient estimation by the proposed equation is 2.6%. Thus this equation is proposed for use in practice by water engineers.
Keywords: Control structure, Conventional weir, Discharge coefficient, Spatially varied flow, Trapezoidal side weir, Water surface profile