Soil science
Saba Bagherifam; Mohammad Amir Delavar; Payman Keshavarz; Parviz Karami
Abstract
Introduction
Soil is one of the main drivers of global warming through losing carbon in the form of CO2. On the other hand, its ability to sequester carbon is a suitable option for reducing CO2 emissions. Therefore, even few changes in carbon sequestration or decomposition of soil organic carbon ...
Read More
Introduction
Soil is one of the main drivers of global warming through losing carbon in the form of CO2. On the other hand, its ability to sequester carbon is a suitable option for reducing CO2 emissions. Therefore, even few changes in carbon sequestration or decomposition of soil organic carbon affect the global atmospheric CO2 content. Although the soils of arid and semi-arid regions have low organic carbon content, they can sequester substantial amounts of carbon due to the large area of these regions. So, the Rothamsted carbon model was used to predict the impact of future climate changes on the amount of CO2 emissions and low soil organic carbon stocks in the semi-arid arable lands of Razavi Khorasan province. This model is one of the most widely used models for the study of soil organic carbon turnover and has been evaluated in a variety of ecosystems including grasslands, forests and croplands and in various climate regions. The RothC model is consists of five conceptual soil carbon pools, four active fractions and a small amount of inert organic matter (IOM) that is resistant to decay. The active pools splits into: Decomposable Plant Material (DPM), Resistant Plant Material (RPM), Microbial Biomass (BIO) and Humified Organic Matter (HUM). This model is able to reveal the effect of soil texture, temperature, rainfall, evaporation, vegetation and crop management on the soil organic carbon turnover process.
Materials and Methods
The Rothamsted carbon model was calibrated and validated using data measured in 2020 and available data from the long-term field experiments in the semi-arid agricultural lands of Jolge Rokh. Then, by analyzing the climate change of the study area, the impact of climate change until the end of the current century on the amount of CO2 cumulative emissions, total organic carbon (TOC) and active carbon pools model were modeled and compared in the current climate and also climate change conditions.
Results and Discussion
The comparison between the measured and simulated soil organic carbon values by the model shows the potential of the model to provide predictions with acceptable accuracy. The outcome of comparisons revealed that R2, Root Mean Square Error (RMSE), Mean Difference (MD), Mean Absolute Error (MAE) and Model efficiency were 0.97, 2.78, 2.11, 2.33 and 0.70 respectively. Assessment of climate changes in the region (during 1981-2020) showed a decrease in precipitation and a significant increase in temperature over the past 40 years. Climate change simulation was carried out by temperature increasing and decreasing the precipitation until the end of the current century, indicated the decrease of all active carbon pools. It was found that DPM, RPM, BIO, HUM and TOC decreased respectively to 2.41, 2.72, 2.51, 1.04 and 1.32% compared to the current climatic conditions, while the cumulative CO2 emission increased by 1.26%. Temperature rising leads to increase the rate modifying factor (a) by 2.20%, which enhances microbial respiration and decomposition rate of organic carbon and CO2 emissions (carbon output). However, it also increases the ecosystem's net primary productivity (carbon input). Decreases in rainfall and increase in potential evapotranspiration cause a reduction of the rate modifying factor (b) to 0.23%, which on one side reduces the activity of microorganisms and carbon biodegradation; but on the other side, it decreases the vegetation cover and following that reduces CO2 trapping during the photosynthesis process and transfers it to the soil. It seems that in arid and semi-arid climates where the lack of moisture is the most important limiting factor of the plants growth; the role of precipitation in carbon decomposition and sequestration is greater than temperature.
Conclusion
The Rothamsted carbon model is suitable for regional simulations because it requires only easily obtainable inputs. Therefore RothC is an appropriate tool for estimating long-term effects of climate change and agricultural management (such as application of manures, returning plant residues to the soil, crop rotations, conservation tillage etc.). The RothC model validation in the cold semi-arid agricultural lands of the region, shows the ability of model to properly simulate the pattern of organic carbon changes. Also, simulation of soil organic carbon changes under the climate changes conditions indicates an increase in cumulative CO2 emissions and decrease in soil organic carbon pools of the study area. The methodology can be applied to other regional estimations, provided that the relevant data are available. The predictions allowed to identify the land management potential to carbon sequestration. Such information demonstrate a beneficial tool for evaluation of past land management effects on soil organic carbon trends and also estimation of future climate change effects on soil organic carbon stocks and CO2 emissions.
Alireza Owji; Ahmad Landi; Saeed Hojati
Abstract
Introduction: Soil is a key resource that contributes to the earth system functioning as a control and manages the cycles of water, biota and geochemical and as an important carbon reservoir. Soil organic matter is one of the most important factors in soil quality assessment and having relationship with ...
Read More
Introduction: Soil is a key resource that contributes to the earth system functioning as a control and manages the cycles of water, biota and geochemical and as an important carbon reservoir. Soil organic matter is one of the most important factors in soil quality assessment and having relationship with physical, chemical and biological properties of soil. Carbon sequestration in plant biomass and soils is the simplest and the most economically practical solution to reduce the risks of atmospheric carbon dioxide. Little information is available about the effects of grazing management on sequestration of carbon in Khuzestan Province pastures. Therefore, this study was conducted to evaluate the effects of grazing exclusion on the amount and forms of carbon management and carbon sequestration with economic view in some pasture soils from Peneti Plain of Izeh area and Dimeh regions of Ramhormoz in Khuzestan Province.
Materials and Methods: This study was conducted in two regions including Izeh and Ramhormoz representing different climates, vegetation and soil types of southwestern Iran. We selected two grazing treatments including ungrazed and grazed pastures in each region. The first area includes rangeland ecosystem in Izeh city between 31° 57ʹ 8ʺ to 31° 58ʹ 20ʺ N and 49° 41ʹ 11ʺ to 49° 42ʹ 33ʺ E. The region has a typical temperate continental climate, characterized by dry summers and cold winters. The mean annual rainfall is 623mm. The mean annual temperature (MAT) is 19.2 °C, and the mean monthly air temperature varies from -0.6 °C in January to 42.4 °C in July. The second area (Ramhormoz) is located between 31° 7ʹ 44ʺ to 31° 9ʹ 11ʺ N and 49° 29ʹ 13ʺ to 49° 28ʹ 52ʺ E. The mean annual rainfall is 200 mm and the mean annual temperature (MAT) is 27.2 °C, and the mean monthly air temperature varies from 4.2 °C in January to 51.6 °C in July. For each climate region, grazed and ungrazed sites were located on the same soil series with similar aspect and slope. Then, random soil samples were taken from the surface and subsurface in 15 points. After air drying the soil samples and passing them through a 2 mm sieve, physical, chemical properties of the soils were measured.
Results and Discussion: The soil of both studied regions are non-saline, calcareous, and alkaline and have relatively heavy texture. The results showed that the studied characteristics in four study areas had low and moderate coefficients of variation. This suggests that the contribution of edaphic and environmental factors to explain variation in the data is not high. Also, grazing management has increased soil organic matter of surface and subsurface soil, but despite the increase in organic matter contents of subsurface soils the difference was not statistically significant. The effect of management practices, in order to have a significant effect to lower parts of the soil, it requires a longer period management. Comparing the biomass upon non-grazing (405 and 42 gm-2 in Izeh and Ramhormoz respectively) and grazed (117 and 17 gm-2) areas, indicates a good condition of vegetation in the non-grazing and the effectiveness of enclosure in rehabilitation of pastures in the study area. However, due to more rainfall rates, the amount of biomass produced in Izeh is higher.
Conclusion: The carbon management index in the study areas, as well as the depths of the study is high, indicating recovery of soil carbon and improving its quality. Also, based on carbon sequestration in the study area, non-grazing was one of the most proper and efficient management practices, which improved soil quality. Accordingly, it seems that non-grazing practices should be considered as one of the major programs in renewable natural resources plans. On the other hand, estimation of the economic value of carbon sequestration in the pastures has been remarkable, and increased 17 and 12.7% of the value of carbon sequestration in Izeh and Ramhormoz regions under the management of the exclusion. Therefore, the management of rangelands should be directed to allow for their ecologic performance and capacity considering the environmental economy of rangelands so that in broad terms, the justification for the enhancement and maintenance of the economic equilibrium can be viewed as a guaranty of implementing the range managements resulting in sustained development.