Malihe Ebrahimi; Hossein Asadi; Arezoo Sharifi; Eisa Ebrahimi
Abstract
Introduction: The study of physical properties of suspended sediments is one of the main topics in river studies. Sediment size distribution is one of the sediment physical properties which indicate the relation between the sediment source and its sedimentation process in watersheds. It is also important ...
Read More
Introduction: The study of physical properties of suspended sediments is one of the main topics in river studies. Sediment size distribution is one of the sediment physical properties which indicate the relation between the sediment source and its sedimentation process in watersheds. It is also important for prediction of the load of non-point source pollution, and for planning sediment trap structures. The Anzali Wetland, located on the southern coast of the Caspian Sea in northern Iran, is a large complex of freshwater lagoons with extensive reed-beds, shallow impoundments and seasonal flooded meadows. Environmental conditions in the Anzali Wetland have been degraded due to the increased inflow of sewerage, wastewater and solid waste from the industry, agriculture and urban area, and sediment from the upper stream mountainous area. The lagoon has decreased in size since the 1930s to less than a quarter of its former extent. The aim of the present study was to assess the changes in size distribution of suspended sediment in Pasikhan River as the most important river interring to Anzali Wetland.
Material and Methods: Pasikhan River originates from the South Mountains, has two branches namely Siahmezgi and Imamzadeh Ebrahim. The sampling carried out during a seven month time period (October 2013 to April 2014) at two hydrometric stations; Mobarakabad (upstream) and Nokhaleh (downstream). The samples were collected in 15 days intervals by depth-integration technique at normal condition. Particle size distribution was measured by Pipette method based on Stocks law. The mean weight diameter (MWD) of sediment particles was calculated, the sediment size distribution curve was drawn and the median grain size (d50) was calculated. According to the European classification, the particles size distribution was divided into four groups of fine sand (0.2 mm), coarse silts (0.06 mm), medium silt (0.02 mm), and fine silt and clay (equal to and less than 0.006 mm). The data were compared for each sampling time for both Stations. Flow discharge and suspended sediment load were also determined at each sampling date.
Results and Discussion: At the Nokhaleh station, the maximum observed flow discharge and sediment concentration were 51.4 m3/s and 4.162 g/L, occurred in February 4, 2014 and November 3, 2013, respectively. The highest flow discharge and sediment concentration of the Mobarakabad were 9.8 m3/s and 2.633 g/L which were observed on February 19, 2014 and April 4, 2014, respectively. These changes and differences were partly due to topography and land use differences between upland and lowland and partly due to rainfall pattern. Results showed that the MWD and d50 were 0.062 and 0.052 mm on average, respectively at Mobarakabad station, and 0.055 and 0.051 mm, respectively at Nowkhaleh station. The maximum values of MWD and d50 were observed to be 0.07 and 0.061 mm, respectively at normal condition at Mobarakabad station. The study of sediment size distribution indicated that the particles smaller than 2 mm comprised 83-94 percent of the suspended sediment at Mobarakabad station, and 87-99 percent at Nokhaleh station. The percentage of particles smaller than 0.02 mm were observed to be 12-33 and 10-64 at Mobarakabad and Noukhaleh stations, respectively. Also the amount of fine silt and clay in suspended sediment were 3-16 and 5-24 percent at these stations. There was not any correlation between flow discharge and sediment concentration or sediment size distribution characteristics.
Conclusion: In most of the samples, there was not any relationship between the flow discharge and particle size distribution of suspended sediment which emphasize on the non-hydraulic nature of sediment transport and the effects of different factors including sediment sources, the season, transport energy, rainfall erosivity, soil erodibility and deposition process. Generally, the size of sediment particles at Mobarakabad station was coarser than Nokhaleh station. This could be due to the type of soil erosion which is different at upstream and downstream. In upstream regions, mainly because of severity of topography and vegetation cover including forest and rangeland, the occurrence of gully erosion and landslide is higher in comparison with surface soil erosion. But in downstream especially in paddy fields, the soil erosion type is mainly splash and sheet erosion. Also the cultivation practices including plowing and paddling of the field usually provides fine particles entering to the river. In addition, the river profile is very gentle at the plain before the Nokhaleh station which resulted in deposition of coarser particles.
K. Roshangar; M.T. Aalami; F. Vojoudi Mehrabani
Abstract
Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models ...
Read More
Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models based on neural, they are not widely used because of lacking explicitness and complexity governing on choosing and architecting of proper network. In this study, a Genetic expression programming model (as an important branches of evolutionary algorithems) for predicting of sediment load is selected and investigated as an intelligent approach along with other known classical and imperical methods such as Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation.
Materials and Methods: In this study, in order to improve explicit prediction of sediment load of Gotoorchay, located in Aras catchment, Northwestern Iran latitude: 38°24´33.3˝ and longitude: 44°46´13.2˝), genetic programming (GP) and Genetic Algorithm (GA) were applied. Moreover, the semi-empirical models for predicting of total sediment load and rating curve have been used. Finally all the methods were compared and the best ones were introduced. Two statistical measures were used to compare the performance of the different models, namely root mean square error (RMSE) and determination coefficient (DC). RMSE and DC indicate the discrepancy between the observed and computed values.
Results and Discussions: The statistical characteristics results obtained from the analysis of genetic programming method for both selected model groups indicated that the model 4 including the only discharge of the river, relative to other studied models had the highest DC and the least RMSE in the testing stage (DC= 0.907, RMSE= 0.067). Although there were several parameters applied in other models, these models were complicated and had weak results of prediction. Our results showed that the model 9, with the most DC and the least RMSE (DC=0.694, RMSE= 0.081), had the relative advantage to the other none dimensional models. Finally it is clear that the model 6 had more predicting capability rather than the model 9, so among all the models, model 6 was the best referring model for estimation of sediment load of the Ghotoorchay river.
Conclusion: It was observed that the model including only the discharge of the Ghotoorchay river the best model for estimation of sediment load and it was applied for comparing all the other sediment predicting models such as some classic methods that includes Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation and optimized rating curve. Among all methods, it was concluded that the genetic programming was superior to other methods in predicting sediment load of the mentioned river. Therefore, genetic programming that is a branch of evolutionary algorithms, with high prediction capability was offered as a powerful tool for optimizing and explicit predicting of total sediment load of the Ghotoorchay River.
A. Shahnazari; A. Ziatabar Ahmadi; Mirkhaleg Ziatabar Ahmadi; Gh. Aghajani
Abstract
The downward flow to the drain pipe, has a greater influence on the movement of soil particles toward drain envelope as compared with the horizontaland radialflow. In this study, by installing of a singular subsurface drainage systemconsisting of threedrain pipeswith drain spacing of 20 m and drain depth ...
Read More
The downward flow to the drain pipe, has a greater influence on the movement of soil particles toward drain envelope as compared with the horizontaland radialflow. In this study, by installing of a singular subsurface drainage systemconsisting of threedrain pipeswith drain spacing of 20 m and drain depth of 1.5 m, in one hectare field of Sari Agricultural Sciences and Natural ResourcesUniversity, the effects of the elimination of downward flow to the drain pipe was investigated on the water table level and drainage flow. Prevention of direct entry of the vertical flow into drain pipe was performed by placing a layer ofplastic coveron the sand envelope of themiddle drain pipe. Water table level fluctuations were measured in holes which were dug in each drain trench and at 0.5, 1.5, 5 and 10 m spacing apart from each drain at intervals of 5, 15, 25, 35, 45, and 55 meters from collector ditch. Water table depth and drain discharge were measured from April 21 to December 21, 2011. The average drainage discharge fromno plastic drain (drain A) was more than corresponding value for plastic covered drain pipe (drain B) about 12 % and there was a significant difference (p=0.05) between drainage water volume of drains A and B. The average depth of water table levels within the trench of drain A was 9.1 cm more than the corresponding water table depth of drain B. Also, the average depths ofwater table in the 0.5, 1.5, and 5 m spacing apart drain A were approximately 5.2, 2.9, and 0.05 m higher than of thosevalues of drain B. Sediment load of drain A was 74% more than that of drain B,indicating the considerable role of the inflow to drain from its upper part on the consequent sediment transport into drain pipes.