Soil science
Fatemeh Nooralivand; A. Farrokhian Firouzi
Abstract
Introduction Wind erosion is one of the important processes of soil degradation in arid and semi-arid regions. Increased soil surface resistance is a key factor to prevent wind erosion. Mulch can increase the resistance of soil surface against erosive agents by creating a coating on the soil surface. ...
Read More
Introduction Wind erosion is one of the important processes of soil degradation in arid and semi-arid regions. Increased soil surface resistance is a key factor to prevent wind erosion. Mulch can increase the resistance of soil surface against erosive agents by creating a coating on the soil surface. The effectiveness of mulch on wind erosion control is on the quantity, type, and durability of the used in dust sources of Iran for stabilizing soil surface against wind erosion. In recent decades, petroleum mulch has been broadly used for stabilizing soil surface against wind erosion in dust sources of Iran. Bio-polymers (e.g. cellulose hydrogel and biochar) and naturally accessible materials (e.g. nanoclay) as environment-friendly mulches can be an alternative to chemical polymers and petroleum mulches. In arid and semi-arid regions, wetting-drying cycles play a crucial role in soil aggregate formation and strength. However, there have been limited studies assessing the impact of wetting-drying cycles on the durability of applied mulches. The main objective of this study was to assess the effectiveness of different types of mulches, including inorganic montmorillonite nanoclay, chemical polyvinyl acetate polymer, and biological biochar and cellulose hydrogel, at various time intervals. The study aimed to improve the physical and mechanical properties of soil, as well as control wind erosion in a loamy sand soil using a wind tunnel. Additionally, the durability of these mulches was evaluated over time after subjecting them to four wetting-drying cycles.Materials and Methods A factorial experiment was conducted based on completely randomized design with three replications. The factors including mulch type (four levels: nanoclay montmorillonite, polyvinyl acetate polymer, biochar and cellulose hydrogel), mulch concentration (Nanoclay montmorillonite: 0, 16 and 32, Polyvinyl Acetate polymer: 0, 8, and 16, biochar and cellulose hydrogel: 0, 65 and 200 g/m2) and duration (21, 42, 63 and 126 days). The soil used in the wind tunnel experiments was collected from a dust source in the southeast of Ahvaz (Site Number 4). Trays measuring 50×30×5 cm were filled with this soil. The soil surface was then uniformly sprayed with an emulsion of Nanoclay and Polyvinyl Acetate. Additionally, biochar and cellulose hydrogel were mixed uniformly with the soil. Water was sprayed on the soil surface to maintain a constant moisture content of 75% of field capacity. After a specified period, soil properties such as mean weight diameter of aggregates, fractal dimension, penetration resistance, and shear strength were measured. The trays were then placed in a wind tunnel, and a wind erosion test was conducted at a wind speed of 20 m/s for a duration of 5 minutes. The amount of soil loss was measured using the weight method. Then, at each time, the best treatment from each mulch (in terms of reducing wind erosion) was selected and subjected to wet and dry cycles (four cycles).Results and Discussion The results showed a significant interaction effects (p<0.01) of mulch type, mulch concentration and time factors on soil aggregate stability and fractal dimension, penetration resistance, shear strength were significant (p<0.01). Soil loss decreased in soils amended with biochar and cellulose hydrogel and increased in the case of montmorillonite and polyvinyl acetate polymer over the time. The amount of soil loss in soil amended with cellulose hydrogel decreased by 99.3%. The highest amount of soil penetration resistance and shear strength was observed in cellulose hydrogel mulch at the fourth time which were equal to 1038 and 123 kPa, respectively. Over time, the mean weight diameter of aggregates increased in the soil treated with cellulose and biochar hydrogels, but decreased in the polyvinyl acetate and montmorillonite nanoclay treatments. There was a negative correlation between aggregate stability and the fractal dimension of aggregates. In terms of soil loss, at the fourth measurement time, soils modified with cellulose hydrogels, biochar, polyvinyl acetate, and montmorillonite nanoclay experienced reductions of 99%, 71%, 84%, and 85% respectively, compared to the control. After four wet and dry cycles, the soil loss further decreased by 98%, 64%, 76%, and 81% in the respective treatments, compared to the control.Conclusion In general, it can be concluded that cellulose hydrogel presented the greatest effect on reducing soil loss and controlling wind erosion. In the soils amended with biochar and cellulose hydrogel, the effect of mulches on reducing soil loss increased over the time. However, the opposite results were found in the case of polyvinyl acetate and montmorillonite nanoclay polymers. Therefore, biochar and cellulose hydrogel in the long term and polyvinyl acetate polymer and montmorillonite nanoclay in the short term can control wind erosion. Wet and dry cycles at all durations increased soil loss. But their effect remained on soil loss reduction until the end of the fourth cycle. The results revealed that environmentally friendly biopolymers synthesized from biomass components can be considered as sustainable sources to reduce wind erosion. Bio-polymers are a new window into the use of sustainable biomaterials instead of synthetics in wind erosion control.
M. Kaveh; M.A. Esmaili; Hematolah Pirdashti; M.R. Ardakani
Abstract
Introduction: Rice is a staple food source and the most important grain in developing countries, which is most commonly consumed by more than 90 percent of the world populations. Moreover, this plant is produced and consumed in Asia. However this major crop faces severe limitations such as water scarcity ...
Read More
Introduction: Rice is a staple food source and the most important grain in developing countries, which is most commonly consumed by more than 90 percent of the world populations. Moreover, this plant is produced and consumed in Asia. However this major crop faces severe limitations such as water scarcity and other environmental stresses. Limited water resources along with climate change effects, have increased attention to methods which improve water use efficiency in crops such as rice cultivation. On the other hand, traditional irrigation methods for rice production often waste considerable fraction of irrigation water. Therefore, it is necessary to modify irrigation and other farming methods. Furthermore, using biochar and nitrogen fixing bacteria as organic biofertilizers can be effective methods to improve water use efficiency and yield attributes of rice plant. Therefore, the present research was conducted to investigate the effect of biochar and Azosprillum lipoferum rhizobacteria on yield and water use efficiency on Tarom Hashemi rice cultivar of under flooded and alternating irrigation regimes. Materials and Methods: This study was conducted at the research fields of the Sari Agricultural Sciences and Natural Resources University in 2017 and 2018. The experimental site is located at 36º 39ʹ42ʺ N latitude and 53º03´54ʺ E longitude with -11 m above sea level. Soil samples were taken from depths of 0-30 cm before land preparation. The experiment was done in factorial split-split plot arrangement with complete randomized blocks based design with three replications. Treatments included two irrigation management methods (flooding and irrigation regimes) in combination with nine fertilizers levels (100% of recommended nitrogen or N100, N100+ 10 ton biochar or biochar 10, N100+ biochar 20, N75, N75+ biochar 10, N100+ biochar 20, N50, n50+ biochar 10 and N100+ biochar 20) as main plots and seedling inoculation with Azospirillum lipoferum bacteria (without inoculation was also included as control) as sub plots.Plot ridges were covered by plastic sheets and inserted into the soil at 50 cm to prevent water flowing from one plot to the others. The plots were then leveled and 3-4 leaf seedlings stage. A specific number of seedlings were gently washed and placed for 30 minutes in a pan containing 10 L of water mixed with 1 L of bacterial inoculum. Carboxymethyl cellulose, 15 g, was added to increase adhesion of bacteria into the plant roots. Nitrogen, phosphorus and potassium fertilizers were applied according to the results of soil analysis. Weeds and pests were controlled mechanically or by hand and no herbicides or pesticides were used. Results and Discussion: Results showed that biochar and nitrogen fertilizers, irrigation methods, and seedling inoculation with bacteria had significant effects on water use efficiency indices. Comparison of means of interaction effects showed that the highest paddy yield (5950.43 and 5330.78 kg/ha, respectively) were observed by flooding irrigation method in combination with N50 + biochar 20 treatment and inoculated by Azospirillum lipoferum bacteria and alternating irrigation management method which was along with N50 + biochar 20 without inoculation. Alternating irrigation plots experienced water shortage in some growth stages and therefore slightly lower paddy yield is acceptable. Application of biochar 20 and flooding or alternating methods which treated by N75 and N50, respectively showed 49.1% increase in economic efficiency index. Conclusion: In general, application of 20 ton biachar along with 75% nitrogen fertilizers led to 42.8% increase in economic advantages in alternating irrigation method as compared to the flooding systems. These observation indicates beneficial effect of fertilizer in economic advantage enhancement in rice cultivation.
H. Lohrasbi; A. Farrokhian Firuzi
Abstract
Introduction: Wind erosion is one of the most important environmental challenges in arid and semiarid regions which cause soil loss and dust storm. In recent decades, the potential of soil erosion has been recognized as serious threat against soil sustainability. In addition, accelerated soil erosion ...
Read More
Introduction: Wind erosion is one of the most important environmental challenges in arid and semiarid regions which cause soil loss and dust storm. In recent decades, the potential of soil erosion has been recognized as serious threat against soil sustainability. In addition, accelerated soil erosion has led to harmful environmental effects. Therefore, focus on soil erosion outcomes is necessary in order to mitigate its environmental impacts. Understanding interactions between land use management and topographical properties of landscape are important in order to effectively control soil erosion through implementing best management practices (BMPs). Application of mulch is one of the most prevailing scenarios to prevent the erosive soil against wind as an erosive factor in the hotspots. In this regard the type of much is really important because the environmental aspects and the mulch consistency are important factors for production and selection of mulch between several options. Nowadays, sustainable management is one of the most important scopes in order to achieve the aims of human healthy. In this regards the Bagasse of sugarcane and Conocarpus were selected as feedstocks to produce biochars. Biochar is the by-product of anaerobic process which called pyrolysis. The biogases, energy and so on are other outputs of pyrolysis. Another treatment which evaluated in this study was Zeoplant. Zeoplant is a super absorptive material which is able to hold the water in the soil therefore is capable to enhance the water holding capacity of the soil.
Materials and Methods: In this study the effects of biochar of Bagasse from sugarcane, biochar of Conocarpus and Zeoplant in three levels (0, 2 and 4 percentage) and two moisture levels (25 and 50 percentage of FC) and 3 replications in randomized completely design with factorial on physical and mechanical properties of soil as indices of soil erodibility was studied. Soil sampling accomplished from Horalazim marshes and after application of treatment, incubated in tray with the size of 70×30×10 cm for 90 days. After incubations the trays located in wind tunnel in order to simulate wind erosion process under a wind with 15 m/sec speed and 2 m from soil surface. The main measured soil physical and mechanical parameters include mean weight diameter (MWD), penetration resistance (PR), tensile strength (TS), friability index (FI), shear strength, crusting index (CI), soil textural index and organic matter. The statistical analysis was performed using SAS 9.2 software and the mean comparison was accomplished with Duncan test (5 %). In order to draw the graphs Origin 2017 software was used.
Results and Discussion: The soil texture was silty loam (SiL) including 62% silt, 26% clay and 12% sand, therefore the soil was sensitive to wind erosion. Soil organic matter before application of biochars and Zeoplant was around 1.93% and after application increased to 3.78%. Application of these treatments and the period of incubation, enhanced the soil porosity. Generally increasing soil organic matter and soil porosity and decreasing of bulk density are the main factors to increase the soil aggregation. Our results showed that all three treatments in two moisture levels significantly increased soil porosity, tensile strength and field capacity and decrease soil crusting index (P<0.01). Biochar of bagasse and Zeoplant (2%) also significantly increased shear strength whereas biochar of Conocarpus has no significant effect on shear strength. Overall the applied treatments with armoring effect (AE) and increase the soil aggregate stability, diminished the wind erosion.
Conclusion: Our study illustrated that application of biochar is able to improve soil physical and mechanical properties. The main aspect of this positive effect is the specific characteristics and the structure of biochar which showed with SEM (Scanning electronic microscope) images. Moreover, Zeoplant is organic-inorganic treatment and including high potential to absorb the water in the soil. Indeed, the mulching is an effective management strategy to maintain and preserve the soil against wind (as erosive agent) however afterwards a vegetation cover must be grow on the surface. Therefore some treatments such as Zeoplant are essential to hold the water in the soils of arid and semiarid regions because in those areas the water scarcity is one of the main challenges. Based on our results and evaluation of these treatments we found two main processes which are effective to mitigate wind erosion. The first is aggregation process because of organic carbon and organic matter in the soil and the binding between organic and inorganic components. The second one is an armoring effect which is originating from amendments especially biochar lumps on the surface. Finally our results confirmed the application of evaluated treatments to preserve the erosive soil against wind.
J. Khallizadeh; E. Dordipour; M. Baranimotlgh; A. Gharanjiki
Abstract
Introduction: Iron deficiency is one of the most important nutritional disorders in plants, particularly in calcareous soils and deeply affects the yield and quality of the product. Due to the major role of iron in the synthesis of chlorophyll, chlorosis occurs in young leaves in deficiency conditions. ...
Read More
Introduction: Iron deficiency is one of the most important nutritional disorders in plants, particularly in calcareous soils and deeply affects the yield and quality of the product. Due to the major role of iron in the synthesis of chlorophyll, chlorosis occurs in young leaves in deficiency conditions. In such condition, biochar can help to increase OM, soil fertility level, and iron use efficiency and, to reduce iron chlorosis. The aim of this study was to investigate the effect of iron- impregnated biochar on the availability of iron and the elimination of soybean iron chlorosis in a calcareous soil.
Materials and Methods: Calcareous soil with iron deficiency (0-30 cm) was collected from the east of Golestan province and prepared for cultivation. Two types of biochar were produced from wheat straw and particleboard through slow pyrolysis (increasing 5 °C/min) at 300 °C for 2 hours under restricted oxygen conditions in an electric furnace, and then impregnated with iron sulfate solution. FTIR spectra and SEM images of biochars surfaces were also provided. A pot experiment was conducted as a factorial based on a completely randomized design with four replications. Factors were biochars (wheat straw biochar (WB) and particleboard biochars (PB) each one with 2.5% w/w), iron impregnated biochars (Fe impregnated wheat straw biochar 2.5% w/w (Fe- IWB1) and 5% w/w (Fe-IWB2), 2.5% w/w (Fe-IPB1) and 5% w/w (Fe-IPB2) Fe impregnated particleboards, Fe- Sequestrene (S) and control without Fe and biochar (C), and two soybean cultivars (Williams and Saman). The sown pots were maintained near the field capacity for 12 weeks. Then, SPAD numbers, concentration and uptake of active iron in young and senile leaves and active iron content in soil were determined after harvest.
Results and Discussion: With increasing application of iron impregnated biochar, active iron content increased in the soil. SPAD numbers of the upper leaves of both soybean cultivars in Fe impregnated biochars were significantly higher than those of non-impregnated biochars and control treatments (P ≤ 0.05). Iron chlorosis symptoms in soybeans decreased following the increased application of Fe impregnated biochars, consequently, there were no iron chlorosis symptoms in 5% Fe impregnated biochar treatments. Also, the active iron concentration of the upper leaves and the amount of leaf active iron uptake significantly increased as a result of Fe impregnated biochars application in both soybean cultivars compared to control and non-impregnated biochars (P ≤ 0.05). The highest concentration of active iron in upper leaves was observed in 5% w/w Fe impregnated biochars treatments, but its value for cultivar Williams in Fe impregnated wheat biochar was higher than that in Fe impregnated particleboard biochar. The results of the SEM images indicated that wheat biochar had more quantity of and fine pores (also CEC) than that of the particleboard biochar, and the surface areas of both biochars were rough and dark after impregnation with iron, indicating the adsorption or accumulation of iron at their surfaces. Also, there was a significant positive correlation between the active iron concentration with SPAD numbers in the upper leaves (r = 0.88 **) and dry weight of soybean shoots (r = 0.87 **). Cultivars responses to Fe impregnated biochars showed that iron uptake and active iron concentration in the upper leaves of Williams variety were significantly less than those of Saman variety at both levels of Fe impregnated biochars (P ≤ 0.05), which indicates that cultivar Williams is more susceptible to the iron chlorosis. The results of this experiment and reports from other studies show that the application of impregnated biochars from nutrients besides increasing SOM, permeability and soil moisture, CEC and soil fertility level, also increases the acquisition and use efficiency of iron in the plant.
Conclusion: The results of this study showed that due to the strong adsorption of soil iron, non-impregnated biochar application in the level of 2.5% had no significant effect on the concentration and uptake of active iron and spad numbers of the plant. However, using Fe impregnated biochar and increasing their application in calcareous soils with iron chlorosis resulted in a significant increase of active soil iron content, concentration and uptake of active iron and SPAD numbers of the plant, and, conversely, a decrease of leaf chlorosis. Therefore, besides improving the physical, chemical and biological properties of the soil, the application of Fe impregnated biochar can also be a promising approach to eliminate iron chlorosis in sensitive plants, particularly soybeans in calcareous soils.
N. Moradi; M.H. Rasouli-Sadaghiani; E. Sepehr
Abstract
Introduction: Biochar is a material produced from organic matters under high temperature and low oxygen conditions. In recent years, scientific attention has been focused on its effects on soil amendment and ecological restoration.Due to its properties related to surface area and porosity, bulk density, ...
Read More
Introduction: Biochar is a material produced from organic matters under high temperature and low oxygen conditions. In recent years, scientific attention has been focused on its effects on soil amendment and ecological restoration.Due to its properties related to surface area and porosity, bulk density, nutrient content, stability, cation exchange capacity (CEC), pH value, and carbon content, biochar has the potential to improve physical and chemical soil properties and thus improve crop productivity and contribute to carbon sequestration. Biochars can have very different properties depending on the feedstock they are produced from and the pyrolysis conditions used to generate them.Biochar retains nutrients for plant uptake and soil fertility. The infiltration of harmful quantities of nutrients and pesticides into ground water and the runoff that erodes the soil and enters into the surface waters can be limited with the use ofbiochar. The actual effects of biochar on soil properties depend on the soil type and the plant species grown on the area of application, as well as biochar type and application rate.The aim of this study was to evaluate the effect of the biochar types and rates on some soil properties and nutrient availability in a calcareous soil.
Materials and Methods: An incubation experiment was conducted in a completely randomized design with three replications. The treatments were three type of biochar (apple pruning wastes, grape pruning wastes and wheat straw), and five biochar rates (0, 1, 2, 4 and 8% w/w). Biochars used in the experiment wereproduced at the final temperature of approximately 350°C for almost 3 hours. The biochars were ground and sieved over 1 mm sieve for the incubation experiment.100 g of soil sample was weighed into polyethylene pots and then thoroughly mixed with 1, 2, 4 and 8 g of the biochar samples. Soil controls were run without any amendment. Distilled water was added to the soil–biochar mixtures (soil samples) in order to keeptheir moisture content to 60% of their water-holding capacity. The incubation was carried out in a controlled incubation chamber at 25oC for incubation in aerobically controlled non-leached conditions during 8 weeks.After 60 days, the samples were dried andsoil pH and electrical conductivity (EC) were determined in 1:5 soil to water extracts. Also, to determine mineral N, the soil samples with biochar were extracted with 2 M KCl. Organic matter was determined by dichromate oxidation. Soil extractable P and K were extracted with 0.5 M NaHCO3 (ratio 1:10) (Olsen-P) and 1 N NH4Ac (1:20) (NH4Ac-EK), respectively. DTPA-extractable Fe, Mn, Cu, and Zn were analyzed by atomic absorption spectrometry method (Shimadzu AA-6300).
Results and Discussion: The results indicated that adding biochar changed some soil properties such as soil organic carbon, pH, electrical conductivity and the availability of some macro and micro nutrients. These changes were also more evident with increasingin the rate of biochar. Soil organic carbon (SOC) contentsin the amount of 8% apple pruning wastes, grape pruning wastes and wheat straw biochar were 3.78, 3.80 and 5.24 times more than control, respectively. Available potassium and phosphorus increased further in derived biochar from wheat straw in the amount of 8% compared with apple pruning and grape pruning wastes. Soil available potassium in wheat straw biochar was 2.19 and 1.88 times higher than apple pruning and grape pruning wastesbiochars, respectively. Wheat straw biochar greatly increased soil EC compared to control, and a higher biochar addition finally resulted in a higher value of soil EC. Also, the mineral – N, comprising of ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N), concentrationshowed significant reduction when different rates of biochar were added to the soil. Increase in the rate of applicationmarkedly reduced the concentration of both NH4-N and NO3-N. Wheat straw biochar significantly reduced available iron. Also, soil available copper significantly decreased by increasing the rate of biochar. But, soil available manganesesignificantly increased by increasing the rate of biochar. The type and rate of studied biochars had no significant effect on available Zn.
Conclusions: Generally, the soil organic carbon (SOC) markedly increased with an increase in rate of application ofbiochar during the 60 days of incubation. This suggests that the biochar has great potential for carbon sequestration in soil.In conclusion, it became clear that in order to allow for accurate prediction of the effects ofbiochar on soil characteristics and nutrient availability, a deeper understanding of interactions between soil type, biochar production method, biochar feedstock, application rate and field crops is essential. Further research is needed to determine long term impacts of biochar on these soils.
Banafsheh Afrasiabi; ebrahim adhami; Hamidreza Owliaie
Abstract
Introduction: Cadmium is one of the toxic heavy metals which is highly problematic in today's industrial world. It is essential to study the techniques for removing or reducing its availability, toxicity and consequently its hazardous effects in environment. Biochar is an amendment reported to be efficient ...
Read More
Introduction: Cadmium is one of the toxic heavy metals which is highly problematic in today's industrial world. It is essential to study the techniques for removing or reducing its availability, toxicity and consequently its hazardous effects in environment. Biochar is an amendment reported to be efficient in fixing heavy metals. Pyrolysis temperature is among the most important factors affecting biochar's characteristics, such as pH, CEC and specific surface area and generally it's potential to sorb heavy metals. On the other hand, soil moisture regime could affect pH and EC and consequently the Cd availability. Iran is the second producer of pistachio in the world and consequently a large volume of pistachio waste byproducts would be created annually. Converting this byproduct to biochar may be an efficient tool to prevent its accumulation. On the other hand, the produced biochar could be used as a soil amendment. The present study was conducted to evaluate biochar produced from pistachio nutshell under different temperatures for reducing Cd availability under different moisture regimes.
Materials and Methods: The soil texture in the present study was sandy-loam. Raw pistachio nutshell (RPN) was used to produce biochar under different temperatures. RPN was rapped in aluminum foils and heated for 2 h in a muffle furnace under 200, 400 and 600 °C. The pH, EC and concentrations of P, K, Fe, Mn, Zn and Cu of RPN and produced biochars were determined. A completely randomized experimental design with factorial arrangement including nine biochar treatments (control (no amendment), RPN and biochars produced under 200, 400 and 600 °C at 2% and 4% rates), and two moisture regims (20% w/w and waterlogging) was carried out with two replications. The samples were spiked with 25 and 50 mg Cd kg-1 and incubated for 90 days under laboratory temperature. Available Cd extracted by DTPA-TEA on 15, 30, 60 and 90 days after incubation. Cadmium concentration determined by Atomic Absorption Spectrometry (Mark and Model: HITACHI- ZCAST 2300). Analysis of variance and compare of means used to evaluate the effects of various treatments on DTPA-Cd.
Results and Discussion: The nutrient concentrations of biochar were increased with increasing the production temperature. The RPN and biochar of 200 ºC had the least nutrient concentrations while the biochar of 600 ºC showed the highest nutrient concentrations. The increases of pH and EC occurred with increasing the biochar production temperature. The pH ranged from 6.36 to 9.36 and EC range was 13.5-31.9 dS m-1. The analysis of variance showed that biochar, moisture regime and their interaction significantly affected DTPA-Cd on all of the studied times (P< 0.01) in both Cd levels. The cadmium availability was reduced by incubation times in all of the treatments and 600°C biochar caused the highest decrease of DTPA-Cd. In 25 mg Cd kg-1 level, the application of 600°C biochar caused significant decrease of DTPA-Cd by 54.2, 73, 53.5 and 60.5 % in comparison with control on 15, 30, 60 and 90 d, respectively. In 50 mg Cd kg-1 level, 600°C biochar in 4% w/w and 20% w/w moisture contents reduced DTPA Cd by 38.6, 43.4, 39.8 and 45.7 mg kg-1 on 15, 30, 60 and 90 d, respectively. The DTPA-Cd was reduced by increasing the biochar application rate to 4% w/w, but only for biochar of 600°C, this reduction had a significant difference with 2% application rate. Four percent biochar application rate on waterlogging condition reduced DTPA-Cd by 60.1%, 34.1 % and 53.6 % compared with 2% application rate on 30, 60 and 90 d, respectively. These changes on 50 mg Cd kg-1 in 20 % moisture level were 36.8, 43.8, 37.7 and 35.2 % on 15, 30, 60 and 90d, respectively. In 20% moisture level, the application of 600 °C biochar reduced DTPA-Cd compared with waterlogging while raw pistachio nuts and 200 and 400 °C biochars showed a reverse trend and increased DTPA-Cd in 20% moisture level compared with waterlogging.
Conclusion: Generally, regarding the decrease of DTPA-Cd by biochars, especially biochar of 600 °C, it can be concluded that biochar of pistachio nut shell particularly under 600 °C might be considered as an inexpensive and green environmental sorbent for Cd, however its potential to reduce Cd uptake by plants and Cd movement in environment requires further studies. Furthermore, the knowledge of the mechanisms that are responsible for Cd retention on biochar and desorption kinetic of sorbed Cd need further investigation.
majid forouhar; Reza Khorassani; Amir Fotovat; Hossein Shariatmadari; Kazem Khavazi
Abstract
Introduction: Global warming is strongly linked to the increase in greenhouse gas emissions to the atmosphere. One of the most efficient ways to reduce the amount of atmospheric CO2 is to produce a lot of biomass and convert the biomass into a biochar. Biochar is an organic carbon-rich solid that can ...
Read More
Introduction: Global warming is strongly linked to the increase in greenhouse gas emissions to the atmosphere. One of the most efficient ways to reduce the amount of atmospheric CO2 is to produce a lot of biomass and convert the biomass into a biochar. Biochar is an organic carbon-rich solid that can be obtained from pyrolysis of various organic materials. In other words, biochar can be produced via thermal degradation of many organic materials such as vegetation biomass, animal waste, sewage sludge, etc. in absence or lack of oxygen. Biochar is more resistant to microbial degradation than its feedstock and has a mean resistance time of several decades. In connection with the use of biochar, the most researches have been done in non-fertile and highly weathered soils. The most significant effects of biochar application, have been also observed in strongly acidic soils. In many arid and semi-arid regions of the world, including Iran, the soil organic matter content is low. The lack of organic resources and their instability in the soil are considered as some of the most important challenges in improving soil fertility and plant growth and yield. To improve soil fertility by using insufficient existing organic resources, stabilizing organic matter by converting it into the biochar can be a fundamental strategy. If this strategy is applied in our country with calcareous soils, it is necessary to study the effects of different biochars on calcareous soils from different aspects .In this regard, in the present study, the effect of three types of biochar in a calcareous soil has been investigated in comparison with their feedstock.
Materials and Methods: The effects of three types of biochar and their feedstock in a calcareous soil were investigated in a 6-months period of incubation. A completely randomized design in the form of split plot experiment, was carried out. The main plots were consisted of Control, Municipal Waste Compost (MWC) and its biochar (BMWC), Sewage Sludge (SS) and its biochar (BSS) and Cow Manure (CM) and its biochar (BCW). The sub plots consisted of five sampling times as 10, 30, 60, 120 and 180 days after the beginning of incubation. Application rate of each treatment per kilogram of soil was calculated based on having the same weight of organic carbon content. So that all treatments contained 2.2 grams of organic carbon. After mixing the treatment with soil and adjusting the humidity to the moisture content of the field capacity (FC), they were transferred to the cans (with 3 holes embedded on their doors) and kept at 25°C in the incubator. During the 6-month incubation period, soil moisture was set at FC levels at intervals of two to three days. Sub samples were taken at five times. After air drying the sub samples, the chemical parameters such as EC of 1:2.5 extract, pH of 1:2.5 suspension, available phosphorus (extracted with sodium bicarbonate 0.5N) and available potassium (extracted with ammonium acetate 1N) were measured. After data collection, statistical analysis was performed using SAS software.
Results and Discussion: The soil texture was sandy loam with 21% of clay, 7% of silt and 72% of sand. Soil CaCO3 content and soil organic carbon content was 16% and 0.23% respectively. Available forms of potassium and phosphorous in soil were 76 and 6.3 mg kg-1, respectively. According to the results, under the influence of each treatment, the variation of soil available P, showed a significant increasing trend with the time. Changes in available potassium and soil pH were not significant over the time. Variation of soil salinity with time although showed an increasing trend but was not significant. Comparison of the effects of treatments showed that both biochars and their feedstock could significantly increase the available phosphorus and potassium in soil. In this regard, the effect of biochars was more pronounced than their feedstock. Among the feedstock, ranking for enhancing effect on available P, was SS > CM > MWC and among the biochars, it was BCM > BSS > BMWC. Ranking for enhancing effect on available K, was CM > MWC > SS and BCM > BMWC > BSS among the feedstock and biochars respectively. The increase in available phosphorus and potassium due to the use of biochars were much higher than that of total phosphorus and total potassium added by biochars. The soil pH decreased as a result of the application of each treatment compared to control. In this regard, the significant difference between biochars and their feedstock were not seen. Probable presence of some amounts of pyrogenic carbon with biochars can be one of the reasons for soil pH reduction. Electrical conductivity of 1:2.5 extract of soil was increased by all treatments compared to the control. Except for BSS, two other biochars significantly increased soil salinity more than their feedstock. This increasing effect on soil salinity can be partially due to the existence of some amount of ash accompanied with biochars.
Conclusions: Application of biochars derived from cow manure, sewage sludge or municipal waste compost in this experimental conditions, led to a significant increase in the amount of available phosphorus and potassium in soil compared to control and their feedstock. Therefore, the use of these biochars can have a high potential for reducing the consumption of some chemical fertilizers. From this point of view, the order of the superiority of the coal was as follows: biochar of cow manure > biochar of municipal waste compost> biochar of sewage sludge. The conversion of any of these feedstock to biochar did not have an effect on their potential for soil pH changes. Except for biochar of sewage sludge, in two other biochar, the potential for increasing soil salinity was higher than the feedstock. Considering that the durability of biochar in soil is much higher than that of its feedstock, it is possible to use suitable biochars such as those examined in this study as a great potential for the sustainable improvement of soil fertility and for reducing the use of chemical fertilizers in our country's agriculture. This requires extensive field researches for other soil properties in different soil and water conditions, with different kinds of biochars and crops.
Iman Nikravesh; Saeid Boroomand Nasab; AbdAli Naseri; Amir Soltani Mohamadi
Abstract
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass ...
Read More
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass and agricultural waste that is burned in the presence of low oxygen content or its absence. The hydrothermal process involves heating the biomass or other materials in a pressurized in the presence of water at a temperature between 180 and 250 C, and the result of this reaction is coal (Hydrochar) and soluble organic matter. Biochar and Hydrochar have several advantages such as climate change mitigation through carbon sequestration, soil cation exchange capacity (CEC) increasing, soil fertility, plant growth and root development, improved soil structure and stability, increased soil moisture storage capacity and soil pH adjustment. Coarse soils have large pores and they have low ability to absorb the water and nutrient. The aim of this research was to determine the optimum temperature of wheat straw Biochar and Hydrochar production, and to investigate the effect of these materials on bulk density, total porosity and moisture curve of Sandy Loam soil.
Materials and Methods: In order to produce biochar, at first the wheat straw was washed and dried in the oven. Then it was grinded and was made at different temperatures (200 to 600 ̊ C) inside a furnace for four hours. Similar to biochar, for producing hydrochar, after washing and drying the wheat straw it was grinded into particles ranges from 0.5 to 1 mm. Then it was placed in a stainless steel autoclave with deionized water. The autoclave was heated at different temperatures between 140-230 ̊ C for four hours. The optimum temperature for producing of biochar and hydro-char was determined by using stable organic matter yield index (SOMYI), and it was used in this study. The pH and EC of the biochar and hydro-char samples were measured by combining 1 g of a sample with 20 mL DI water. The cationic and anionic exchange capacity were determined by replacing sodium nitrate with hydrochloric and potassium chloride (Chintala et al., 2013). Surface area was obtained using methylene blue method. A CHNSO Elemental Analyzer (Vario ELIII- elementar- made in Germany) was used to determine the content of C, N, H, S and O in the samples. Potassium and sodium content were measured by flame photometer and calcium and magnesium were measured by titration with EDTA. Biohchar and hydrochar treatments were applied at three levels of 2, 5 and 10 mg / kg soil in three replications in 21 lysimeter. The bulk density, total porosity and moisture curve of soil were measured after four-month irrigation period.
Results and Discussion: According to the calculated value of stable organic matter yield index (SOMYI) at various temperatures in this study, the maximum thermal constancy of wheat straw biochar was 16.20 at temperature of 300 ̊ C and for hydro-char was obtained as 6.13 at the temperature of 200 ̊ C. So, the temperatures of 300 and 200 ̊C were determined as the optimum temperature of sustainable carbon biochar and hydro-char production and were used to continue the experiments of this study. The results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to soil compared to control treatment significantly decreased the bulk density of the soil, 8.97, 11.77, 15.17, 7.9, 10 and 13.10 percent respectively. Also, results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to the soil as compared to control treatment increased soil porosity by 8.8, 11.48, 15.77, 6.48, 9 and 22.13 percent, respectively. The reason for reducing the soil bulk density and increasing the total porosity of soil can be due to the mixing of the soil with materials with a lower bulk density and the effect of increasing the organic matter of the soil due to the use of Biochar and Hydrochar. Based on statistical analysis, wheat straw Biochar and Hydrochar had a significant effect (P