M. R. Emdad; A. Tafteh
Abstract
Introduction: SALTMED model is one of the most practical tools for simulating soil salinity and crop production yield. Growth models are important and efficient tools for studying and evaluating the impact of different management conditions and scenarios on water, soil and plant relationships and can ...
Read More
Introduction: SALTMED model is one of the most practical tools for simulating soil salinity and crop production yield. Growth models are important and efficient tools for studying and evaluating the impact of different management conditions and scenarios on water, soil and plant relationships and can be used to make or predict appropriate management scenarios according to the region's conditions and to predict plant performance in the field. Since the performance of irrigation scenarios in field conditions are costly and time consuming, and due to the limited water resources in the country and the necessity of optimal water use in agriculture, using the efficient and generic models can be useful tool for simulating crop production and soil salinity variations. This research has been conducted in order to simulate soil salinity and yield production using SALTMED model in Azadegan Plain of Khuzestan province. Materials and Methods: This study was carried out in wheat fields of Azadegan plain in Khuzestan province during 2014-2015 in three regions including Ramseh (as saline soil), Atabieh (as very saline soil) and Hamidieh (as control, non-saline soil). Three 10-hectare plots were selected in each area and a pilot with area of 2000 m2 was used for evaluation and measurement in each plot. First year data were used to calibrate the SALTMED model and second year field data were used to validate the model and to achieve the results in three conditions. The dominant soil texture in the area was clay loam. The quality of used irrigation water with average salinity of 2 dSm-1 was classified as C3-S1(high salinity with low sodium absorption ratio) and had no effect on wheat yield loss. In this study, version 3-04-25(2018) of SALTMED model was used and after calibrating in the first year, the results of simulated wheat grain yield and soil salinity variation values were used for model validation in different regions and in soils with different degrees of salinity, in the second year. Results and Discussion: The average measured and simulated biomass yield in the first year were 6.6 and 6.1 t/ha, respectively. Furthermore, the average of measured and simulated of wheat grain yield was 2.9 and 2.6 t/ha, respectively. Some statistical indices including mean bias error, normalized root mean square error, and root mean square error for grain yield were 0.11, 0.04, and 0.12 t/ha, respectively. The values of the same statistical parameters for biomass were -0.49, 0.1, and 0.61t/ha, respectively. These results showed that the measured values of grain yield and wheat biomass were in good agreement with the simulated values using SALTMED model. The simulated and measured variations of soil salinity at three soil depths of 0-30, 30-60, and 60-90 cm, showed close agreement with each other in three layers. Root mean square error, normalized root mean square error, and mean bias error for soil salinity values were 1.3, 0.20, and -0.06, respectively. After calibrating the model in the first year, to validate this model in the second year, the results of three pilots locations in three regions of Ramseh (saline), Atabieh(very saline) and Hamidieh(non-saline) were used. Comparison of simulated and measured wheat grain yield and biomass values showed that there was no significant difference between simulated and measured values. The simulated values of grain yield and wheat biomass in the three non-saline, saline and very saline soils had high correlation with the measured values, indicating high accuracy and efficiency of this model in simulating grain and biomass yield in different degrees of soil salinity. Moreover, the trend of soil salinity changes simulated by the SALTMED model in three highly saline, saline and non-saline soils (for three soil layers) was close to the measured values. The SALTMED model with normalized root mean square error and mean bias error of 0.18 and -0.13, respectively, showed good accuracy in different salinity conditions. There was no significant difference (5% level) between the measured and simulated salinity values of the different soil layers. The mean standard error at the 0-30, 30-60, and 60-90 cm layers was 1.1, 1.05, and 0.81 dSm-1, respectively. Therefore, based on the results and statistical indices, it was found that SALTMED model had good accuracy and efficiency in simulating yield, biomass and soil salinity under different salinity conditions. Conclusion: According to the results and statistical indices, SALTMED model had good performance and accuracy in simulating grain yield, biomass and soil salinity variations in different soil salinity conditions and so it can be used to predict wheat yield, yield components and soil salinity in different soil condition with different degrees of soil salinity to sustain soil and water and improve water productivity in similar areas.
Yousef Hasheminejhad; Mehdi Homaee; Ali Akbar Noroozi
Abstract
Introduction: Soil salinization is increasing across developing world countries and agricultural production is decreasing as a result of this stress. Climate change could adversely affect soil salinization trend through the decrease in rainfall and increased evapotranspiration in arid regions. Policy ...
Read More
Introduction: Soil salinization is increasing across developing world countries and agricultural production is decreasing as a result of this stress. Climate change could adversely affect soil salinization trend through the decrease in rainfall and increased evapotranspiration in arid regions. Policy and decision makers require continuous and quantitative monitoring of soil salinity to adapt with the adverse effects of climate change and increasing need for food. Indices derived from near surface or satellite based sensors are increasingly applied for monitoring of soil salinity so a considerable number of these indices are introduced already for soil salinity monitoring. Different regression methods have been already used for modeling and verification of developed models amongst them multiple linear regression (including stepwise, forward selection and backward elimination) and partial least square regression are the most important methods.
Materials and Methods: To evaluate different approaches for modeling soil salinity against remotely sensed data, an area of about 50000 ha was selected in Sabzevar- Davarzan plain during 2013 and 2014 years. The locations of sampling points were determined using Latin Hypercube Sampling (LHS) strategy. Sampling density was 97 points for 2013 and 25 points for 2014. All points were sampled down to 90 cm depth in 30 cm increments. Totally 366 soil samples were analyzed in the laboratory for electrical conductivity of saturated extract. Electromagnetic induction device (EM38) was also used to measure bulk soil electrical conductivity for the sampling points at the first year and sampling points and 8 points around it at the second year. Totally 97 and 225 EM measurements were also recorded for first and second years respectively. Mean measured soil EC data were calibrated against the EM measurements. Finding the fair correlations, the EM and EC data could be converted to each other. 23 spectral indices derived from Landsat 8 images in the sampling dates along with DEM were used as independent variables. Multiple Linear Regression (MLR) and Partial Least Square Regression (PLSR) methods were evaluated for their fitness in predicting soil salinity from independent variables in different calibration and verification datasets.
Results and Discussion: Different multiple linear regression approaches using the first year data for training and second year data for testing the models and vice versa were evaluated which produced determination coefficients of about 22 to 88 percent in the training dataset but this regression did not reach to 29 percent in the test dataset. Due to the multiple co-linearity amongst the independent variables the multiple linear regression methods were not applicable to all variables. Excluding the co-linear variables, log- transforming and randomizing them into train and test datasets improved the determination coefficient of model and its validation at an acceptable level. Application of partial least square regression using the original and log- transformed data of first and second years as train and test datasets and vice versa introduced determination coefficients of about 39 to 85 percent in the training dataset but were not able to predict in the test dataset. Random dividing of all data into train and test datasets considerably increased the determination coefficient in the verification dataset. Repeating the randomization showed that the approach has the required consistency for predicting the coefficients of variables.
Conclusions: Wide range of independent variable could be used for predicting soil salinity from remotely sensed data and indices. On the other hand the independent variables generally show multi-colinearity amongst themselves. Correlation matrix, variance inflation factor and tolerance indices could be used to identify multi-colinearity. Removing or scaling the variable with high colinearity could improve the regression. Different data transformation methods including log- transformation could also significantly improve the strength of regression. In this research EM data showed more significant correlations with spectral indices in comparison with laboratorial measured EC data. As the EM38 device measures the reflectance in special range of spectrum this higher correlation could be expected. Such models should be calibrated and verified against ground truth data. Generally a part of data set is used for calibrating (making the model) and the remained for verifying (testing the model). Random dividing of the total data of 2 years into calibration (2/3 of data) and verification (1/3 of data) could significantly improve the regression in the verification data set. This procedure increases the range of variability for data used for calibration and verification and prevents outlier predictions.