Soil science
Yahya Kooch; Mahmood Tavakoli Feizabadi; Katayoun Haghverdi
Abstract
IntroductionSoil, as habitat substrate, helps to regulate important ecosystem processes, including nutrient absorption, organic matter decomposition. Water availability and the well-being of humanity are directly linked to soil functions. On the other hand, vegetation with different species and ages ...
Read More
IntroductionSoil, as habitat substrate, helps to regulate important ecosystem processes, including nutrient absorption, organic matter decomposition. Water availability and the well-being of humanity are directly linked to soil functions. On the other hand, vegetation with different species and ages have significant effects on the status of the surface soil layer through the creation of diverse environmental conditions and the production of different organic substances. However, few studies have been conducted in relation to the effect of the age of afforestation and the type of vegetation on the soil status. Considering that a practical, complete and effective assessment of soil condition should be the result of simultaneous measurement of physical, chemical and biological indicators, hereupon, the present study aimed to investigate the effect of 20-year old poplar stand, 20-year old maple stand, 10-year old poplar stand, 10-year old maple stand and rangeland cover, in plot 3 of Delak-Khil series of wood and paper forests in Mazandaran province, on the organic layer properties and physical, chemical and biological (including microbial activities, enzyme activity, earthworm population and biomass, the number of soil nematodes and root biomass) properties of the surface soil layer. Materials and MethodsFor this purpose, some parts of the study area were selected which are continuous with each other and have minimum height difference from the sea level, minimum change in percentage and direction of slope. Then, in order to take samples from the organic and surface layer of the soil, three one-hectare plots with distances of at least 600 meters were selected in each study habitats. From each of the one-hectare plots, 5 leaf litter samples and 5 soil samples (30 cm × 30 cm by 10 cm depth) were taken to the laboratory for analysis . In total, 15 litter samples and 15 soil samples were collected from each of the habitats under study. One part of the soil samples was passed through a 2 mm sieve after air-drying to perform physical and chemical tests, and the second part of the samples was kept at 4 °C for biological tests. One-way analysis of variance tests was used to compare the characteristics of organic layer and soil between the studied habitats. In the following, Duncan's test (P>0.05) was used to compare the average parameters that had significant differences among different habitats.Results and DiscussionThe results of this research showed that afforested stands with different ages and pasture cover had a significant effect on the characteristics of the organic and surface soil layers. The results indicated the improvement of most of the characteristics of the organic and surface soil layer in the afforested stands, especially the 20-year old afforestation compared to the rangeland cover. The organic matter produced in 20-year old afforestation, especially with poplar species, had a higher quality (high nitrogen and carbon content and low carbon-to-nitrogen ratio) compared to organic matter produced in 10-year old afforestation and pasture cover. Most of the physicochemical characteristics of the soil under 20-year old afforestation were in a better condition than the other studied habitats. Also, according to the results of this research, the highest values of biological characteristics such as microbial activity, enzyme activity, and the population of earthworms and nematodes were observed in the subsoil of 20-year old afforestation especially with poplar species. Based on the results obtained from the principal component analysis, the higher values of nitrogen, phosphorus, calcium, magnesium and potassium content of the organic layer led to the improvement of soil fertility characteristics, microbial activities, enzyme activity, earthworm population, the number of soil nematodes and root biomass, respectively, under poplar and maple plantation for 20 years, meanwhile, 10-year old plantation, especially with maple species, and rangeland with the production of organic materials with high carbon content and carbon to nitrogen ratio, resulted in the reduction of organic matter decomposition (greater thickness of organic layer), and consequently the reduction of the mentioned properties of the surface soil layer. ConclusionAccording to the findings of this research, it can be concluded that plantation with poplar species, especially after 20 years, had a higher ability to improve the soil condition compared to maple, which can be considered by managers in future afforestation. Also, with the passage of time, the presence of tree covers (poplar and maple) had a higher priority than rangeland cover in improving the fertility status and suitable edaphological conditions of the soil.
samaneh Tajik; shamsollah Ayoubi; jahangir khajehali; shaban shataee
Abstract
Introduction: Soil microorganisms are the essential part of forest ecosystems which play a key role on soil nutrient changes. The biological activity in soil is largely concentrated in topsoil. Despite the small volume of microorganisms in soil, they have a key role on nitrogen, sulphur and phosphorous ...
Read More
Introduction: Soil microorganisms are the essential part of forest ecosystems which play a key role on soil nutrient changes. The biological activity in soil is largely concentrated in topsoil. Despite the small volume of microorganisms in soil, they have a key role on nitrogen, sulphur and phosphorous cycles and the decomposition of organic residues. Soil microorganisms have been identified as the sensitive indicators for soil quality. The composition of microorganisms and their fractional activities in soils significantly affect biochemical cycles, carbon sequestration and soil fertility. As soil microbial communities respond differently respected to environmental conditions, it seems that variation in forest ecosystem could significantly affect microbial community. Plants are one of the important variables for assessing soil microbial communities which their effect is related to root secretions and litter decomposition. The phospholipid fatty acid (PLFA) analysis is one of the methods that can overcome the problem of selective growth of microorganisms on culture media which is a major defect in the identification of microbial diversity. The objective of this study was to investigate the effects of different tree compositions and soil properties on soil microbial community using PLFA analysis approach.
Materials and Methods: This study was conducted in ShastKalate forest, an experimental forest station of Gorgan University, located at eastern Caspian region, North of Iran (36° 43′ 27″ N ,54°24′ 57″ E). Eleven different tree compositions were selected and the surface soils collected from 0-10 cm depth of 33 plots. Soil samples were air dried and passed through a 2mm sieve. Then one portion of the sieved samples was used for physical and chemical analyses. The other portion was rewetted to 65% of field capacity and incubated at 37 °C for 3 days to analyses PLFA. Soil particle size distribution (clay, silt and sand) was determined using the hydrometer method. Soil pH in 1/ 2.5 soil to water suspension and electrical conductivity (EC) in the same extract were measured.. Calcium carbonate equivalent (CCE),soil organic carbon (OC) and total nitrogen (TN) was determined, too. Biological analyzes including soil microbial respiration determination and PLFA analysis were carried out. The PLFA detection and quantification were performed with a Hewlett-Packard 5890 Series II gas chromatograph (GC) equipped with an HP Ultra 2 capillary column and a flame ionization detector. The normalized data were employed for Pearson's correlation analysis and ANOVA to determine the effects of soil properties and different tree compositions on soil microbial community.
Results and Discussion: Gram+ and Gram- bacteria were the most microorganisms and protozoa were the least microorganisms in soil samples. The results of the correlation between soil properties and microorganisms showed that OC and TN had significant positive effects on microorganism’s communities. EC was significantly correlated with Arbuscular Mycorrhizal Fungi (AMF), actionbacterial, protozoa and total PLFA. In addition, soil microorganisms and total PLFA were significantly correlated with soil respiration. However, there was no significant correlation between TN and OC with protozoa. The correlations between pH, EC, CCE and sand with protozoa were significantly negative, but in the case of silt, this correlation was significantly positive. Different studies showed that soil organic matter is the main nutrient source for soil microorganisms and soil microorganisms are also the essential part of C and N cycles. The effects of tree compositions on 16:0 10-methyl, 18:2 w6c, 20:2 w6c, 20:3 w6c and 20:4 w6c were significant(p