Irrigation
N. Najafi Iman Abadi; M.A. Gholami Sefidkouhi; S. Shiukhy-Soqanloo
Abstract
Introduction
Today, the crisis of water resources is one of the biggest challenges of human societies. Population growth and industrialization have increased the demand for water consumption. The agricultural sector is facing many problems to supply the required water resources. Irrigation management ...
Read More
Introduction
Today, the crisis of water resources is one of the biggest challenges of human societies. Population growth and industrialization have increased the demand for water consumption. The agricultural sector is facing many problems to supply the required water resources. Irrigation management and the use of plastic mulches play a crucial role in raised-bed cultivation of horticultural and medicinal plants, serving various purposes such as enhancing quality and increasing yield. Moreover, given the current water scarcity conditions, improving the quantitative and qualitative yield of medicinal plants relies heavily on effective irrigation management and efficient cultivation practices.
Material and Methods
In this research, a split-plot experiment was conducted using a randomized complete block design (RCBD). The experimental treatments included: the main factor of irrigation management (IM) with four levels (IM100, IM80, IM60 and IM40) and the sub-factor of plastic mulch (PM) with two levels (black plastic mulch (PM1) and no mulch (PM0)) with 3 replications during the growth season 2022-2023 and was conducted at Sari Agricultural Sciences and Natural Resources University (SANRU), Iran. The dimensions of the experimental plot was arranged as 1.80 × 1.20 meters (length and width). Lemon balm was planted in rows with a spacing of 30 cm between plants and 40 cm between rows. Soil moisture was measured by weight method and irrigation was done manually with a sprinkler. In the end, the data obtained from measuring water productivity (WP), relative water content (RWC), essential oil content, morphological and biochemical characteristics of lemon balm were analyzed using ANOVA of SAS software. The Duncan multiple range post hoc test was employed to compare treatment means.
Result
Based on the findings, the interaction effect of irrigation management and plastic mulch on water productivity was significant. So, the IM100 conditions and PM1, the highest water productivity was observed with 38.5 kg.m-3 and the lowest amount was related to IM40 and PM0 25 kg m-3. The results showed that the simple effect of IM on the RWC in IM100 was very noticeable and obvious compared to other IMs. The highest (74.3%) RWC was observed in IM100, while the lowest RWC was related to IM40 (40.1%). In PM1, the highest amount of RWC (62.1%) was observed and the lowest amount was related to the PM0 (51.8%). The results showed that vegetative wet and dry weight, leaf area index (LAI) and the number of lateral branches of lemon balm increased under the IMs and PM1 affect compared to the control (PM0). The comparison of averages indicated that the highest wet and dry root weights were 217 kg ha-1 and 140.8 kg ha-1, respectively, observed in the IM100 treatment. Additionally, the highest wet and dry root weights under the plastic mulch treatment (PM1) were 151.1 kg ha-1 and 108.5 kg ha-1, respectively. The results also showed that the highest vegetative wet and dry weights were recorded at 647.2 kg ha-1 and 231 kg ha-1, respectively, in the IM100 treatment. Furthermore, the interaction effect of irrigation management (IM) and plastic mulch (PM) on the leaf area index revealed that the highest LAI value (2.8) was observed in the IM100 and PM1 combination. This was while the lowest value of the LAI was related to IM40 and PM0. The interaction effect of IM and PM on the number of lateral branches indicated that IM100 and PM1, the highest number of lateral branches (12) was generated. Based on the obtained results, the highest amount of phenol and flavonoids content were related to IM40 and PM0 with 13.4 mg.GA g-1 and 14.6 mg.QU g-1, respectively. While their lowest amount was observed under IM100 and PM1 with 10.2 mg.GA g-1 and 11.8 mg.QU g-1, respectively. Also, the results showed that the highest essential oil content was related to IM100 and IM80 conditions with 1.14% and 1.13 %, respectively, and the lowest was observed in IM40 condition with 0.53%.
Conclusion
The evaluation of the irrigation management and plastic mulch effects on water productivity and quantitative and qualitative yield of lemon balm showed that the use of plastic mulch by maintaining soil moisture and improving cultivation conditions, increased the vegetative growth and some qualitative characteristics. In general, due to the crisis of lack of water resources and the challenge of water scarcity, irrigation under IM80 conditions and the use of black plastic mulch in the rise-bed of lemon balm are suggested.
Agricultural Meteorology
M. Fashaee; S.H. Sanaei Nejad; M. Quchanian
Abstract
Introduction Drought analysis in agriculture can not only be achieved by measuring precipitation changes but also by using other parameters such as soil moisture. Due to the fact that soil moisture affects plant growth and yield, it is often considered for monitoring agricultural drought. Remote ...
Read More
Introduction Drought analysis in agriculture can not only be achieved by measuring precipitation changes but also by using other parameters such as soil moisture. Due to the fact that soil moisture affects plant growth and yield, it is often considered for monitoring agricultural drought. Remote sensing data are often provided from three sources: microwave, visible and thermal. Most satellite soil moisture-based algorithms rely on passive microwave images, active microwaves, or a combination of data from several different sensors. Among the various remote sensing methods, the microwave electromagnetic spectrum has fewer physical limitations than other spectrum in measuring soil moisture. However, microwave soil moisture data often have very large pixel dimensions (more than 10 km), making it difficult to use them on a small scale.Materials and Methods In this study, in order to calculate the agricultural drought index at the field-scale, AMSR2 Retrieval data were calibrated first using field moisture measurement data in the Neishabour plain during 2017 to 2019. During the research period, 560 soil samples (20 samples in 28 shifts) were collected and soil moisture was measured in the laboratory of the Department of Water Science and Engineering, Ferdowsi University of Mashhad. LPRM_AMSR2_ SOILM3_001 is one of the third level products of the AMSR2 sensor, which is produced on a daily basis with a spatial resolution of 25 × 25 km2. Land surface parameters including surface temperature, surface soil moisture and plant water availability were obtained by passive microwave data using the Land parameter Retrieval Method (LPRM). Then, by using Modis sensor images (NDVI and LST), linear downscaling equations were extracted. The dimensions of the AMSR2 images were reduced from 25 kilometers to 1000 meters using these equations. In next step, SMADI Agricultural Drought Index, which is a combination of vegetation characteristics, soil moisture and land surface temperature, was used to monitor agricultural drought at the field-scale. Statistical indicators such as coefficient of determination (R^2), mean absolute error (MAE) and root mean square error (RMSE) were also used to evaluate the statistical performance.Results and DiscussionBy visual analysis of the role of vegetation and land unevenness, it was found that these two factors affect the regression relationships extracted for calibration of remote sensing data. The RMSE and MAE values for the regression equations used in the calibration process were calculated in the range of 1.6 to 4%, which can be considered acceptable in comparison with the mean values of the soil moisture data (15 to 20). The results showed that changes in SMADI index in three land use zones including rainfed cultivation (R1), medium rangeland (R2) and poor rangeland (R3) have experienced a similar trend to precipitation changes, illustrating that precipitation is one of the most effective factors in major changes in SMADI agricultural drought index fluctuations. It was also observed that SMADI index changes with a delay of 1 to 8 days compared to the precipitation changes in all three zones. In all three zones, the SMADI index followed a similar trend to in-situ soil moisture changes. At mot 80% of the changes in SMADI-R1 index can be explained by in-situ SM-R1, and the rest of the changes were related to other environmental factors or measurement error. This decreases to 68% in the R3 zone. It should be noted that soil moisture monitoring can more accurately reflect the impact of environmental factors on the changes in agricultural drought index such as SMADI than other variables; because the rainfall recorded at the meteorological station does not necessarily occur uniformly throughout the study area. On the other hand, any amount of precipitation will not necessarily lead to an effective change in soil moisture storage. This also renders assessment of the performance of agricultural drought indicators difficult.Conclusion Examination of statistical indices of coefficient of determination (R2), mean absolute error value (MAE) and root mean square error (RMSE) showed that the algorithm used in downscaling as well as estimating SMADI agricultural drought index is well able to reflect the interactions between precipitation, soil moisture, vegetation and changes in canopy temperature profile. This feature justifies and strengthens its application in agrometeorological analysis.
rahim motalebifard
Abstract
Introduction: With 12 million tons production per year, garlic is the fourth important crop in world. In addition to its medical value, it has been used in food industry. The Hamedan province with 1900 ha cultivation area and 38 percent of production is one of the most important garlic area productions ...
Read More
Introduction: With 12 million tons production per year, garlic is the fourth important crop in world. In addition to its medical value, it has been used in food industry. The Hamedan province with 1900 ha cultivation area and 38 percent of production is one of the most important garlic area productions in Iran. Few studies on water use and management of garlic exist in the world. Garlic is very sensitive to water deficit especially in tubers initiation and ripening periods. The current research was done because of scarce research on garlic production under water deficit condition in Iran and importance of plant nutrition and nutrients especially nitrogen on garlic production under stressful conditions. Nitrogen is necessary and important element for increasing the yield and quality of garlic. Application of nitrogen increases the growth trend of garlic such as number of leaves, leaf length and plant body. Reports have shown that garlic has high nitrogen requirement, particularly in the early stages of growth.
Materials and Methods: This study was conducted for evaluating the combined effects of nitrogen and irrigation on the yield and quality of garlic (Allium sativumL.). The study was performed as a split-block based on randomized complete blocks design with factors of irrigation at four levels (0-3(normal irrigation), 3-6 (slight water deficit), 6-9 (moderate water deficit) and 9-12 (sever water deficit) meters distance from main line source sprinkler system), nitrogen at four levels (0, 50,100 and 150 kg nitrogen per ha) using three replications and line source sprinkler irrigation system. The total water of irrigation levels was measured by boxes that were fixed in meddle of each plot. The statistical analysis of results were performed using themethod described by Hanks (1980). The chlorophyll index was measured using the chlorophyll meter 502 (Minolta, Spain). The chlorophyll a and bwas measured by the method described by Arnon (1946) and Gross (1991) in fresh leaf samples using spectrophotometer at 645 and 663 nm. Data were subjected to analysis of variance using MSTATC and SPSS softwares. Duncan’s multiple range test at p≤0.05 probability level was applied to compare the mean values of measured attributes. The Excel software (Excel software 2007, Microsoft Inc., WA, USA) was used to draw Figures.
Results and Discussion: The results showed that, the application of nitrogen significantly affected most of measured attributes. The application of 150 kg N per ha showed highest stem height (40.5 cm), dry weight of stem (5.34 g),wet weight of stem (69.5 g), chlorophyll index (49.7),chlorophyll a (9.8 mg.g-1dw) and chlorophyll b (4.04 mg.g-1dw) and increased stem height, dry and wet weight of stem, chlorophyll index and chlorophyll a and b around 7, 6, 7, 12, 22 and 36 percent, respectively. The irrigation levels significantly affected most of measured attributes similar to the nitrogen levels. The application of 409 mm irrigation water per growing season resulted to maximum stem height (41.9 cm), leaf number (7.5), dry weight of stem (5.39 g) and wet weight of stem (70.1 g), chlorophyll index (50.5) and chlorophyll a (10.2 mg.g-1dw) and chlorophyll b (4.04 mg.g-1dw). The severe water deficit (application of 138 mm irrigation water per growing season) decreased stem height, leaf numbers, dry and wet weight of stem, chlorophyll index and chlorophyll a and b about 13, 36, 12, 12, 19, 42 and 44 percent, respectively. The two way interaction of nitrogen and irrigation was significant and mostly synergistic on wet and dry weight of stem. The highest amounts of stem wet weight (73.2 g) and stem dry weight (5.63 g) were resulted from application of 150 kg nitrogen per ha under full irrigated condition that increased dry and wet weight of stem 17 and 25 percent respectively comparing with without nitrogen application under sever water deficit condition. Application of 409 mm irrigation and 100 kg N per ha is suitable for condition that enough irrigation waterexists. However in water deficit condition, the application of 150 kg nitrogen per ha could be recommended.
Conclusion: In general, to achieve the optimum growth of garlic in similar soils and climatic conditions, application of 100 kg nitrogen per ha would be recommended under normal irrigation conditions while at water deficit conditions the application150 kg nitrogen per ha could be recommended that had only two percent difference with the mentioned treatment and this difference was not significant.
A. Shahnazari; M. Rezaiyan
Abstract
Introduction: Deficit irrigation (DI) is a suitable solution to gain acceptable and economic performance by using minimum amount of water. The partial root zone drying (PRD) method introduced in Australia for the first time and its goal was controlling the vine’s excessive growth. This goal gained ...
Read More
Introduction: Deficit irrigation (DI) is a suitable solution to gain acceptable and economic performance by using minimum amount of water. The partial root zone drying (PRD) method introduced in Australia for the first time and its goal was controlling the vine’s excessive growth. This goal gained by alternative drying the rootzone. Basically the theory of PRD method, is expanding the plant’s roots by applying alternative stress on different sides of the roots. So the plants with PRD irrigation method can have different root system in comparison with other irrigation methods. At this method the plant’s condition would be OK by uptaking water from wet side, and the roots at the dry side can release abscisic acid hormone which decrease the stomatal conductance and consequently the water use efficiency would be increase.There had been studies on the effect of water tension on strawberry. The previous studies on strawberry indicated that the water stress can increase the plant’s brix concentration and some of plant acids.The awareness of the impact of water deficit stress on strawberry plant quantity and quality is essential for irrigation and product management, and at the current study, effect of different deficit irrigation methods on quantitative and qualitative traits of strawberry have been evaluated. The focus at the current study was on the qualitative traits.
Materials and Methods: The present study was conducted in one of strawberry farms of Babolsar city in 2012 to evaluate the effects of deficit irrigation and partial root zone drying on quantitative and qualitative traits of strawberry plants. Three Irrigation treatments were studied: Full Irrigation (FI), Regulated Deficit Irrigation (RDI75%) at 75% level of plants water requirementand Partial Root zone Drying (PRD75%) at 75% level of plants water requirement. The study was conducted in a randomized complete block design with three replications. Irrigation was continued until the soil moisture reached to field capacity. The field capacity point’s moisture was measured by using pressure plate equipment. By having the soil moisture curve and measuring the soil suction with tensiometer, the soil moisture situation determined. According to the point that the strawberry’s root is about 25 centimeters (cm), the tensiometers were installed at 2 depths next to the plant. The 1st depth was 8 cm and the 2nd one was 23 cm. The distance between tensiometers and the plant were 4 cm. 2 stochastic replication at the field were considered for the tensiometers positions. In order to deliver precise amount of water to irrigation treatments, the volume counters had been used. The water was applying by using drip tapes. The flow from the emitters on the drip tapes was 2.9 liters per hour. The harvest time was from May 5th to June 20th. To measure the performance, each shrub’s strawberries were weighted separately.Depth of irrigation water during the whole irrigation season for full and deficit irrigation treatments were 341 and 256 mm, respectively. Evaluating the effect of treatments was conducted by measuring the quantitative and qualitative traits of fruits at harvesting time.For analyzing the data, the SAS software and to plot the graphs, the Excel software were used. The SNK test (5% level) was used to comprise the treatments’ traits.
Results and Discussion: Quantitative traits consisted of fresh weight, dry weight, leaf area, leaf area index and yield in FI was higher significantly than deficit irrigation treatments. In comparison with the qualitative traits consisted of titratable acid, acidity and flavor of the fruit there was no significant difference between treatments. The leaf area index (LAI) at RDI and PRD were lower than the FI. Its reason could be the growth’ reducing as a result of abscisic acid (ABA) hormone’s release in the roots which can control the growth. The amount of total sugar (brix) and anthocyanin in RDI were significantly higher than the other two treatments.
Conclusion: The comparison between irrigation treatments indicated that the best quantitative results were at FI treatment. By considering the quantitative and qualitative traits, PRD had the nearest results to FI. At the water stress conditions, applying PRD method at 75% level would be a good management technic to have better performance and increasing the fruit quality. In Mazandaran Province condition, using this method would be a good way to minimize the quantitative losses and increasing the quality of fruits at stress condition.