Irrigation
Sh. Nourinezhad; M.M. Rajabi; T. Fathi
Abstract
Introduction Simulation of quantity and quality of surface runoff in mountainous watersheds is one of the most challenging topics in modeling due to its unique features, such as unusual topography and complex hydrological processes. One of the lesser-known aspects of modeling such catchments is ...
Read More
Introduction Simulation of quantity and quality of surface runoff in mountainous watersheds is one of the most challenging topics in modeling due to its unique features, such as unusual topography and complex hydrological processes. One of the lesser-known aspects of modeling such catchments is the uncertainty analysis of water quality predictions, especially about the vital phosphorus parameter. Phosphorus is one of the important quality variables in water, and its increase in water resources can cause eutrophication phenomena in streams and reservoirs of dams. Due to the importance of the phosphorus parameter and the fact that water quality modeling has not been employed in the Karaj catchment area so far, in this research, total phosphorus has been modeled as a water quality parameter along with the flow and sediment discharge. This study aims to identify the most sensitive parameters of the model to flow, sediment, and total phosphorus discharge and calibrate, validate and analyze the parametric uncertainty of the SWAT model in predicting these three variables in a mountainous catchment. The case study was the catchment area of the Karaj River upstream of Bileqan pond, which is one of the mountainous watersheds in Iran. There are two critical water structures along the Karaj River, namely Amirkabir dam and Bilqan pond. Amirkabir dam (Karaj) is a multi-purpose project that is constructed to supply drinking water to Tehran and regulate water for irrigation and agriculture in the suburbs of Karaj. The Bileqan pond is also the essential point of supply and transfer of drinking water in Tehran. Given the importance of this region in supplying water for different uses, providing a calibrated model for quantitative and qualitative variables of water can be the basis for decisions to apply future management scenarios in this basin.Materials and Methods The case study was the Karaj River catchment area upstream of Bilqan Basin, which with an average height of 2880 meters, is one of the mountainous areas located in the Alborz Mountains. This basin with an area of 1076 square kilometers in the north, includes parts of Mazandaran province. In the east and south of the catchment area includes parts of Tehran province and most of it is located in Alborz province. The average annual temperature and rainfall in this basin are 12.1 °C and 480 mm, respectively, and the average of 117 glacial days during the year is observed in this area. The long-term daily data of synoptic stations adjacent to the study area from the beginning of 1998 to the end of 2018 (21 years in total) was introduced to the model. Also, daily data of relative humidity, rainfall, minimum and maximum temperature, solar radiation hours, and wind speed as meteorological parameters measured at stations in the study area were introduced to the model. It should be noted that there was a lot of missing data in meteorological information, especially for daily temperature data. In addition to the above information, daily flow data discharged from Amirkabir dam and technical specifications of the dam were introduced to the model. In addition, orchard management information, including irrigation periods and information related to phosphate fertilizers used in regional orchards, were presented to the model. The global sensitivity analysis method was used to determine the sensitive parameters of the model. Furthermore, the SUFI2 algorithm was used in SWAT_CUP software to calibrate and analyze the parametric uncertainty of the SWAT model. This algorithm quantifies the output uncertainty by 95% prediction uncertainty boundaries.Results and Discussion According to the results of sensitivity analysis, the parameters Baseflow alpha-factor (ALPHA_BF), Manning’s “n” value for overland flow (OV_N), and Precipitation Laps rate (PLAPS) were the most sensitive parameters to flow, sediment, and total phosphorus, respectively. The best Nash-Sutcliffe (NS) coefficients for runoff, sediment, and total phosphorus simulation obtained in all stations and after full calibration and validation periods were equal to 0.76, 0.56, and 0.92, respectively. Simulation of the peak points of the diagram of all three quantities was also associated with increased uncertainty and decreased model prediction accuracy, but due to the placement of more than 70% of the measured runoff and sediment values and nearly 60% of the measured total phosphorus values in the prediction uncertainty boundaries generated by SUFI2 algorithm the final value of the parameters used in the calibration process can be appropriate for simulating future scenarios in similar mountain catchments. The main weakness of the model is simulating the peak points of flow and sediment discharge. In the case of flow and sediment discharge, the liability of modeling can be generalized due to the lack of accurate prediction of the snowmelt inflow to the river in spring, which begins to increase in February and reaches the peak point in May. A considerable number of missing data in meteorological stations can effectively reflect the lack of accurate model prediction at the peak points. In this region, missing daily temperature data compared to other meteorological parameters has been significant. The dependency of the SWAT model on many experimental and quasi-experimental models such as SCS-CN and MUSLE can be another factor affecting the weakness in predicting the peak points of the sediment discharge, as well.Conclusion According to the uncertainty analysis results, most of observed flow, sediment and total phosphorus discharge values were within the uncertainty prediction boundaries generated by the SUFI2 algorithm. The NS coefficient for all three variables has met the satisfactory modeling threshold. Therefore, it seems that the sensitive parameters identified and used in the calibration process in this study and their final values can be appropriate for modeling future scenarios for this study area and similar mountain catchments. One of the limitations of the present study was a large number of missing data in meteorological stations, especially for the temperature variable. Thus, providing required measured meteorological data to the model may emhance the simulation, especially at peak points.
Saeed Farzin; Reza Hajiabadi; Mohammad Hossein Ahmadi
Abstract
Introduction: Dynamic nature of hydrological phenomena and the limited availability of appropriate mathematical tools caused the most previous studies in this field led to the random and the probabilistic approach. So selection the best model for evaluation of these phenomena is essential and complex. ...
Read More
Introduction: Dynamic nature of hydrological phenomena and the limited availability of appropriate mathematical tools caused the most previous studies in this field led to the random and the probabilistic approach. So selection the best model for evaluation of these phenomena is essential and complex. Nowadays different models are used for evaluation and prediction of hydrological phenomena. Damle and Yalcin (2007) estimated river runoff by chaos theory. khatibi et al (2012) used artificial neural network and gene expression programming to predict relative humidity. Zounemat and Kisi (2015) evaluated chaotic behavior of marine wind-wave system of Caspian sea. One of the important hydrological phenomena is evaporation, especially in lakes. The investigation of deterministic and stochastic behavior of water evaporation values in the lakes in order to select the best simulation approach and capable of prediction is an important and controversial issue that has been studied in this research.
Materials and Methods: In the present paper, monthly values of evaporation are evaluated by two different models. Chaos theory and artificial neural network are used for the analysis of stochastic behavior and capability of prediction of water evaporation values in the Urmia Lake in northwestern of Iran. In recent years, Urmia Lake has unpleasant changes and drop in water level due to inappropriate management and climate change. One of the important factors related to climate change, is evaporation. Urmia Lake is a salt lake, and because of existence valuable ecology, environmental issues and maintenance of ecosystems of this lake are very important. So evaporation can have an essential role in the salinity, environmental and the hydrological cycle of the lake.
In this regard, according to the ability of chaos theory and artificial neural network to analysis nonlinear dynamic systems; monthly values of evaporation, during a 40-year period, are investigated and then predicted. So that, 10 years of data are applied to model validation and a four-year time horizon is predicted by each model. In the present paper, a multi-layer perceptron network with a hidden layer are used. Number of neurons in the hidden layer is determined by try and error. Also different input combinations are used to find out the best artificial neural network model. Prediction accuracy of models is evaluated by three indexes. These three indexes are mean absolute error (MAE), root mean squared error (RMSE) and determination coefficient (R2).
Results and Discussion: Results of chaotic parameters such as a positive lyapunov exponent and the correlation dimension non-integer slope indicate that evaporation values in the Urmia Lake have chaotic behavior. So these values have not stochastic behavior and can be predicted by suitable models. Chaos theory and artificial neural network are used for prediction in this paper. Values of MAE, RMSE and R2 for validation data are 10.96, 14.67 and 0.97 for artificial neural network and 13.47, 16.92 and 0.97 for chaos theory, respectively. The determination coefficient is the same in the two models while the values of MAE and RMSE is lower in the artificial neural network. So error indexes indicate that the artificial neural network is slightly better than the chaos theory. In order to prediction by artificial neural network, The best input combination includes four time delays that they are values of a month ago, two months ago, eleven and twelve months ago. Because in the chaos theory only the evaporation time series is applied, in order to better comparison of artificial neural network and chaos theory, in the artificial neural network model only the evaporation time series is used. Results of the four-year time horizon indicate somewhat similar behavior of two models especially in the minimum and maximum values of time series. In the maximum and minimum value chaos theory and artificial neural network predict similar values while in the other values there are some difference and the artificial neural network model predicted values less than chaos theory.
Conclusions: The results obtained from the chaotic nature determination parameters of the evaporation data, positive lyapunov exponent and the correlation dimension non-integer slope; indicate the chaotic behavior of study time series. Therefore, the system has a hidden pattern (i.e., the system isn’t Stochastic). The verification results indicate the high accuracy of chaos theory and neural network models - a little more accurate - and it was found that both models have similar accuracy in prediction of the future evaporation values or data that haven't been recorded in the past.
Farshad Fathian; Ahmad Fakheri-Fard; Yagob Dinpashoh; Seyed Saeid Mousavi Nadoushani
Abstract
Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. ...
Read More
Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR) method is frequently applied in modeling the mean (first order moment) of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average) and non-linear (such as two- and three- regime TAR) models.
Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin) were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years) were chosen for calibration and data for January 01 2010 to December 31 2011 (2 years) were chosen for validation, subjectively. As data have seasonal cycles, statistical indices (such as mean and standard deviation) of daily discharge were estimated using Fourier series. Then ARMA and two- and three-regime SETAR models applied to the standardized daily river flow time series. Some performance criteria were used to evaluate the models accuracy. In other words, in this paper, linear and non-linear models such as ARMA and two- and three-regime SETAR models were fitted to observed river flows. The parameters associated to the models, e.g. the threshold value for the SETAR model was estimated. Finally, the fitted linear and non-linear models were selected using the Akaike Information Criterion (AIC), Root Mean Square (RMSE) and Sum of Squared Residuals (SSR) criteria. In order to check the adequacy of the fitted models the Ljung-Box test was used.
Results and Discussion: To a certain degree the result of the river flow data of study area indicates that the threshold models may be appropriate for modeling and forecasting the streamflows of rivers located in the upstream part of Zarrineh Roud dam. According to the obtained evaluation criteria of fitted models, it can be concluded the performance of two- and three- regime SETAR models are slightly better than the ARMA model in all selected stations. As well as, modeling and comparison of SETAR models showed that the three-regime SETAR model have evaluation criteria better than two-regime SETAR model in all stations except Ghabghablou station.
Conclusion: In the present study, we attempted to model daily streamflows of Zarrineh Rood Basin Rivers located in the south of Urmia Lake by applying ARMA and two- and three-regime SETAR models. This is mainly because very few efforts and rather less attention have been paid to this non-linear approach in hydrology and water resources engineering generally.
Therefore, two types of data-driven models were used for modeling and forecasting daily streamflow: (i) deseasonalized ARMA-type model, and (ii) Threshold Autoregressive model, including Self-Existing TAR (SETAR) model. Each ARMA and SETAR models were fitted to daily streamflow time series of the rivers located in the study area. In general, it can be concluded that the overall performance of SETAR model is slightly better than ARMA model. Furthermore, SETAR model is very similar AR model, therefor, it can be easily used in water resources engineering field. On the other hand, due to apply these non-linear models, the number of estimated parameters in comparison with linear models has decreased.