Irrigation
H. Ramezani Etedali; F. Safari
Abstract
IntroductionEvaluation of plant models in agriculture has been done by many researchers. The purpose of this work is to determine the appropriate plant model for planning and predicting the response of crops in different regions. This action is made it possible to study the effect of various factors ...
Read More
IntroductionEvaluation of plant models in agriculture has been done by many researchers. The purpose of this work is to determine the appropriate plant model for planning and predicting the response of crops in different regions. This action is made it possible to study the effect of various factors on the performance and efficiency of plant water consumption by spending less time and money. Since the most important agricultural product in Iran is wheat, so proper management of wheat fields has an important role in food security and sustainable agriculture in the country. The main source of food for the people in Iran is wheat and its products, and any action to increase the yield of wheat is necessary due to limited water and soil resources. Evapotranspiration is a complex and non-linear process and depends on various climatic factors such as temperature, humidity, wind speed, radiation, type and stage of plant growth. Therefore, in the present study, by using daily meteorological data of Urmia, Rasht, Qazvin, Mashhad and Yazd stations, the average daily evapotranspiration values based on the results of the FAO-Penman-Monteith method are modeled and the accuracy of the two methods temperature method (Hargreaves-Samani and Blaney-Criddle) and three radiation methods (Priestley-Taylor, Turc and Makkink) were compared with FAO-56 for wheat.Materials and MethodsThe present study was conducted to evaluate the accuracy and efficiency of the AquaCrop model in simulation of evapotranspiration and biomass, using different methods for estimation reference evapotranspiration in five stations (Urmia, Qazvin, Rasht, Yazd and Mashhad). Four different climates (arid, semi-arid, humid and semi-humid) were considered in Iran for wheat production. The equations used to estimate the reference evapotranspiration in this study are: Hargreaves-Samani (H.S), Blaney-Criddle (B.C), Priestley-Taylor (P.T), Turc (T) and Makkink (Mak). Then, the results were compared with the data of the mentioned stations for wheat by error statistical criteria including: explanation coefficient (R2), normal root mean square error (NRMSE) and Nash-Sutcliffe index (N.S).Results and DiscussionThe value of the explanation coefficient (R2) of simulation ET and biomass in the Blaney-Criddle method is close to one, which shows a good correlation between the data. The NRMSE and Nash-Sutcliffe values for both parameters and the five stations are in the range of 0-20 and close to one, respectively, which indicates the AquaCrop model's ability to simulate ET and biomass. On the other hand, the value of R2 in the Hargreaves-Samani method for biomass close to one, NRMSE in the range of 0-10 and Nash-Sutcliffe index is more than 0.5, which indicates a good simulation. The NRMSE index in the evaluation of ET and biomass wheat is excellent for the Blaney-Criddle method and about Hargreaves-Samani for ET is poor and for the biomass is excellent.The Turc method with NRMSE in the range of 0-30, explanation coefficient close to or equal to one and a Nash-Sutcliffe index of one or close to one can be used to simulate ET and biomass at all five stations. Also, for biomass simulation, Priestley-Taylor and Makkink methods have acceptable statistical values in all five stations.Based on the value of explanation coefficient (R2) of estimation ET and biomass wheat for radiation methods, the correlation between the data in all three radiation methods is high. Percentage of NRMSE index of Makkink method for wheat in ET evaluation in Qazvin station is poor category and in Urmia and Rasht is good and in Mashhad and Yazd is moderate and about biomass in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd) is excellent category, the error percentage of Priestley-Taylor method for wheat in ET evaluation in Yazd station is good and the rest of the stations is poor, about biomass is excellent in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd). The error rate of Turc method for wheat in ET evaluation in Urmia, Rasht and Mashhad stations is good and in Qazvin and Yazd is poor and about biomass is excellent in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd).ConclusionAccording to the results obtained using Blaney-Criddle method with R2 value close to one, NRMSE in the range of 0-20% (excellent to good) and Nash-Sutcliffe index close to one and Turc method with R2 value close to one, NRMSE in the range of 0-10% (excellent) and Nash-Sutcliffe index close to one was showed a good accuracy of AquaCrop model in simulation of evapotranspiration and biomass with these methods of estimation of evapotranspiration compared to other methods.
Irrigation
B. Sadeghi; B. Farhadi Bansouleh; A. Bafkar; M. Ghobadi
Abstract
IntroductionThe rapid growth of the world's population, followed by an increase in the need for water, has put great pressure on water resources, so it is necessary to plan for the optimal use and increase of efficiency of this vital resource. Sunflower is one of the most important oilseed crops that ...
Read More
IntroductionThe rapid growth of the world's population, followed by an increase in the need for water, has put great pressure on water resources, so it is necessary to plan for the optimal use and increase of efficiency of this vital resource. Sunflower is one of the most important oilseed crops that is mainly cultivated in Kermanshah province. Therefore, determining the appropriate sowing time of this crop for maximum production and water use efficiency is of particular importance. Because field experiments are costly and time-consuming, researchers use crop growth simulation models to determine the optimal planting time for each crop in a specific environment and climate. The use of simulation models minimizes the limitations of field experiments and allows the analysis of plant responses to environmental stresses and management scenarios. The objective of this study was to determine the optimal planting date of the Farrokh sunflower cultivar in four regions of Kermanshah province (Kermanshah, Islam Abad, Sarpol Zahab, and Kangavar) in order to maximize yield and water use efficiency using the AquaCrop model.Materials and MethodsA field experiment was conducted at the Research Farm of Razi University, Kermanshah, Iran in order to calibrate and validate the crop parameters in the AquaCrop model. The experiment was performed in a randomized complete block design with eight irrigation treatments in three replications. The irrigation treatments were the application of 60, 80, 100, and 120% of irrigation requirement (T1, T2, T3, and T4), 20 and 40% deficit irrigation in vegetative phase (T5 and T6), and 20 and 40% deficit irrigation in reproductive phase (T7 and T8). The crop water requirement was calculated based on the daily weather data collected from an automated meteorological station at the Research Farm using the FAO Penman-Monteith equation. During the growing season, canopy cover, biomass, and soil moisture were measured weekly. The crop parameters were calibrated based on the measured data in treatments T1, T3, T6, and T7 and validated with four treatments T2, T4, T6, and T8. In the calibration and validation stages, the statistical indices including compatibility index (d) and root mean square error (RMSE) were used to evaluate the model outputs. The calibrated model was used to simulate crop growth based on daily weather data for 30 years (1988-2017) in four synoptic stations in Kermanshah province (Kermanshah, Islam Abad, Sarpol Zahab, and Kangavar) and for several different planting dates. The crop water productivity was calculated based on simulated grain yield and seasonal crop evapotranspiration. Finally, the model outputs under different planting dates were analyzed to determine the most appropriate planting time from the perspective of maximum production and maximum water use efficiency.Results and Discussion Statistical indicators show that the model has simulated the parameters of biomass, crop canopy, and soil moisture in the calibration stage with good accuracy. T1 and T6 treatments in biomass simulation, T7, T6, and T3 treatments in crop canopy simulation, and T3 and T7 treatments in soil moisture simulation had the highest accuracy. The accuracy of the model outputs in the validation stage for biomass and canopy cover was as accurate as in the calibration stage, while the accuracy of the simulated soil moisture in the validation stage was not high except in T4 treatment. Based on the model results, grain yield, seasonal evapotranspiration and water productivity were determined. According to the results, it can be said that in the study period (1988 -2017), grain yield has generally increased with a slight slope. The results showed that the planting date, which maximizes grain yield and water productivity, varies in the studied regions. According to the model results, planting in the second decade of May and the second decade of June will lead to the highest grain yield and water productivity in Kermanshah, respectively. Planting in the third decade of May showed the highest grain yield and crop water productivity in Islam Abad. In Sarpol Zahab, which has the highest temperature among the studied stations, planting in the last decade of March and the first decade of April has the highest grain yield and water productivity, respectively. In Kangavar, which is located in the east of Kermanshah province and has the coldest climate, by cultivating sunflower in the last decade of May and the first decade of June, respectively, the highest grain yield and water productivity can be achieved.ConclusionDue to the fact that some crop parameters of crop growth simulation models are variety specific, in this study, the crop parameters of the AquaCrop model for Farrokh sunflower cultivar were calibrated and validated. The accuracy of the calibrated model for estimating biomass and canopy cover was higher than soil moisture. The simulation results showed that the values of the studied parameters (grain yield and seasonal evapotranspiration) have changes according to the planting time in each region. The highest crop yield can be obtained in Sarpol Zahab, Islam Abad, Kermanshah, and Kangavar regions (west to east of the province) by cultivation in the last decade of March, last decade of April, the second decade of May, and last decade of May, respectively. In all study areas except Islamabad, planting date that resulted in maximum water productivity was different from the planting date that had maximum grain yield station and delayed planting had the highest water productivity.
H. Ramezani Etedali; Maryam Pashazadeh; B. Nazari; abbas sotoodehnia; A. Kaviani
Abstract
Introduction: Regarding population growth rate and drought challenges, one of the effective strategies for sustainable development in agricultural sector is irrigation. In this regard, in recent years, the use of tape irrigation method has been considered in crop plants, but the use of this system will ...
Read More
Introduction: Regarding population growth rate and drought challenges, one of the effective strategies for sustainable development in agricultural sector is irrigation. In this regard, in recent years, the use of tape irrigation method has been considered in crop plants, but the use of this system will be successful if it is to evaluate the system performance in terms of soil sustainability before it is implemented and its problems are solved. Problems in the field of sustainable agriculture are saltinification of soil resources that the tape irrigation over time and due to the continuity of its use in cultivated land, especially in warm and dry areas due to global warming, climate change and decline of the atmospheric precipitation leads to salinity accumulation in the soil.
Materials and Methods: In order to investigate the distribution and changes of salinity of soil profile in the root development zone of wheat, maize, barley and tomatoes grown in Qazvin Plain with initial salinity of 1/5 dS/m and salinity of irrigation water 1 dS/m In hot and dry climate, a type of irrigation was used (strip drip) and during the 20 years of cultivation, the AquaCrop version 5 was used. The results of simulation output were analyzed by Minitab 17 and Excel 2007 softwares.
Results and Discussion: The results showed that in all previous stuides, the amount of salinity accumulated through the tape irrigation in the soil surface is greater, but in this study, due to the time effect on salt accumulation in the soil profile in the root development area, The maximum salt accumulation below the soil surface and at depths (0/5, 1/5, 0/5 and 0/16) meter of the total root development depth of each plant, respectively, for tomato, maize, barley and Wheat has occurred. It can be said that over time, accumulated salt on the surface of the soil evaporated, re-moved with irrigation and redistributed under the soil profile. Simulation results were obtained after statistical analysis with Minitab 17 and Excel 2007 software showed that in tomato and corn products, tape irrigation with irrigation water salinity of 1 dS/m resulted in significant increase in average salinity of The root development zone from 1/5 is 4 and 4/4 dS/m over the course of 20 years (correlation significance at 5% level) and sustainable utilization of soil resources is questioned, While the increase in average salinity of root development zone in wheat and barley products due to tape irrigation over the course of 20 years has risen from 1.5 to 2/03 and 2/02 dS/m, which is not noticeable and at the level of 5% is not significance. This can be attributed to rainfall during the growing season of wheat and barley, which led to salt salting from the root zone. The correctness of this theory was tested by the significance of the correlation between rainfall and salinity in the 5% level and proved to be. Therefore, it is recommended to wheat and barley with the ability to tolerate high soil salinity are placed in the top priority for local irrigation in hot and dry areas with limited atmospheric rainfall and limited water resources.
Conclusions: From the above results, it was observed that, in products such as maize and tomatoes, tape irrigation resulted in a significant increase in the mean salinity of the root development zone over time. However, the increase in average salinity of root development in wheat and barley products due to the tape irrigation is negligible and canceled over time. In other words, the cultivation of crops such as barley and wheat in areas with scarcity of water resources and soil salinity ensures sustainable land management. These results, while using water with salinity of about 1 dS/m, and soil cultivation with an average salinity of 1/5 dS/m, have been taken. Since comprehensive and practical research has not been done on long-term salinity changes and the use of tape irrigation, after the cultivation of important crops such as wheat, barley, corn, tomato, the results of this research can be used in conducting managerial guidelines, The selection and prioritization of the appropriate cropping pattern in the warm and dry areas will be beneficial with few atmospheric precipitations.