sonia zebardast; Seyed Hassan Tabatabaei; Fariborz Abbasi; Manouchehr Heidarpour; Carlo Gualtieri
Abstract
Introduction: It is important to understand the processes of diffusion and transporting solute in the furrow irrigation system, because of their role in diffusion of pollutants in the environment. Movement pattern of fertilizer from the source ofplants is usually under the effect of advection and turbulent ...
Read More
Introduction: It is important to understand the processes of diffusion and transporting solute in the furrow irrigation system, because of their role in diffusion of pollutants in the environment. Movement pattern of fertilizer from the source ofplants is usually under the effect of advection and turbulent diffusion processes. Maximum solute diffusion length (SDL) is the minimum distance which materials such as a fertilizer, could uniformly spread in the whole flow cross section. The SDL depends on hydraulic properties, condition of vegetation and channel specifications. Velocity profile of furrows as a result of parabolic shape of the cross-section is different thanthe rivers and rectangular channels. The main objectives of this study were to investigate SDL in a permeable parabolic channel and evaluate the effect of different discharges and bed roughness on diffusion length in a parabolic cross-section of a furrow.
Materials and Methods: In this research, the effect of different levels of discharge and the bed roughness coefficient was studied on transverse diffusion coefficient (TDC) and the maximum solute diffusion length (SDL) in a parabolic channel with permeable and impermeable beds. The channel had a 10 m length, 0.5 m width and 0.3 m depth with a parabolic shape (similar tothefurrow irrigation system). Before entering the channel, the water flow passed the lattice filters to slow the flow. To increase the rate of flow development, the first half meter of the channel’s bed covered with gravels (maximum 5 cm thickness) and non-submerged woods. Three levels of discharge about were conducted including 5, 10 and 15 L/s as well as three levels of bed roughness coefficient including 0.2, 0.04 and 0.06. Different rates of roughness were created using various thickness of net and vegetation cover on the furrow’s bed and wall. This research was conducted in channels with beds of permeable and impermeable. In bed of with permeability, 15 holes with a diameter of 1.5 mm construct along the bed of channel. In this experiment, Sodium chloride as a tracer was injected to the water at the upstream cross section. The place of injection was 2.5 meters far from the channel inlet where flow was completely developed and water surface swings were constant. The tracer concentration in the water and the velocity profile were measured at eight cross sections along the channel including 3, 4, 5, 6, 7, 8, 9 and 9.5 m from upstream. The velocity profile was measured using Pitot tube. No specific equation is introduced to calculate the SDL. For this reason, dimensional analysis was used in this study.
Results and Discussion: The results show that, the values of TDC for different treatments ranged between 0.23 to 0.56 cm2/s in impermeable channel where it is 0.30 to 0.58 cm2/s in the permeable channel. Also the values of SDL ranged 108-170 m in impermeable channel and 91 -129 m in the permeable channel for different treatments. TDC has direct relation todischarge and bed roughness. In stationary bed roughness with increased discharge, and in stationary discharge with increasing bed roughness, TDC increased. Also In stationary bed roughness, discharge has positive and direct relation with SDL. However, in stationary discharge, roughness value has the negative relation with SDL. A statistical analysis of T-test indicated that the difference between the values of TDC and SDL in permeable and impermeable beds in the 1% level is significant. The Darcy Weisbach coefficient is the most important parameter in justifyingchanges SDL that this parameter depends on the velocity of flow, and the velocity of flow depends on discharge and shape of channel too. According to the results of the experiments and the regular values of discharge, infiltration and roughness coefficient in furrows, it was shown that the maximum solute diffusion length of furrows would be less than 70 meters.
Conclusions: The objective of this research was to develop an approach for the determination of solute diffusion in afurrow irrigation system where the cross section is parabolic. For this reason, solute diffusion length, in different bed roughness and inflow rate was studied. Eventually, an equation was developed to explain SDL in a permeable parabolic channel andthese experimental results could prove useful to predict the fertilizer transport in furrow irrigation method as well as other areas where mixing and contaminant decay is of interest.
M. Hajhashemkhani; M. Ghobadi Nia; Seyed Hassan Tabatabaei; A. Hosseinpour; S. Houshmand
Abstract
Recently, wastewater is one of the water resources for irrigation due to the scarcity of water resources. In this regard, using adsorbents such as zeolites is recommended to improve the characteristics of the wastewater. Although the results show that natural zeolite decrease amount of pollutions but ...
Read More
Recently, wastewater is one of the water resources for irrigation due to the scarcity of water resources. In this regard, using adsorbents such as zeolites is recommended to improve the characteristics of the wastewater. Although the results show that natural zeolite decrease amount of pollutions but at the same time decreases the permeability of the soil, which could adversely affect the soil. This study was done in 2012 at the Shahrekord University, 27 PVC columns were used to study the effect of modified zeolite particles on permeability and quality of the wastewater. The experiment consisted of two factors the type of the microzeolite (natural zeolite, modified zeolite) and application procedure of the micro zeolite (mixed, layer) with three replications and in total had 7 treated. Injection of wastewater into the soil was through waterlogging and repeated fifteen times with a weekly frequency. Volume of wastewater used in each injection is equal "nv". In frequency injections of 1,3,5,7,11,15 infiltration was measured using Falling Heads. The results showed that treatment of modified zeolite included mixed, middle layer and layer on the surface had the highest infiltration rate respectively and treatment with natural zeolite included mixed, middle layer, layer on the surface had lowest infiltration rate. Further modified treatments decreased Ca effluent rate 111% with respect to natural Zeolite and therefore caused modified treatments to decrease SAR amount 45% with respect to control treatments and 132% with respect to natural zeolite.
jalil kakeh; manoochehr gorji
Abstract
Biological soil crusts (BSCs( result from an intimate association between soil particles and cyanobacteria, algae, fungi, lichens and mosses in different proportions, which live on the surface, or immediately in the uppermost millimeters of soil. Biological soil crusts, are important from the ecological ...
Read More
Biological soil crusts (BSCs( result from an intimate association between soil particles and cyanobacteria, algae, fungi, lichens and mosses in different proportions, which live on the surface, or immediately in the uppermost millimeters of soil. Biological soil crusts, are important from the ecological view point and their effects on the environment, especially in rangeland, and desert ecosystems. These effects have encouraged researchers to have a special attention to this components of the ecosystems. The present study carried out in Qara Qir rangeland of Golestan province, Iran, to investigate the effects of BSCs on Soil saline-sodic properties. In the study area, four sites were selected which included sections with and without BSCs. Soil sampling was carried out in each section for depths of 0-5 and 5-15 cm, with four replication. The gathered data from soil samples were analyzed by nested plot. Results showed that BSCs than non-BSCs, significantly decrease the amount of soil acidity, calcium carbonate and soil saline-sodic properties such as electrical conductivity, sodium, calcium and magnesium concentration, sodium adsorption ratio, and exchangeable sodium percentage at both depths. In general, it can be concluded that BSCs enhance soil infiltration rate and available water content, that together their bioaccumulation properties, leads to decreasing soil saline-sodic properties. Potassium concentration did not differ among areas covered by BSCs and without BSCs. But infiltration rate and available water content were increased significantly in two mentioned depths on sites covered with BSCs than without BSCs. In general, it can be concluded that BSCs enhance soil infiltration rate and available water content, that together their bioaccumulation properties, leads to decreasing soil saline-sodic properties.
R. Ghafourian; A. Bagherian kalat; A. Gord Noushahri
Abstract
Part of water flowing downstream in rivers, infiltrates into the bed river. Infiltrated water depends on morphologic and hydraulic characteristic of the rivers. Planners and managers want to know the amount of water infiltrates into the bed and consequently recharges ground water. In this study three ...
Read More
Part of water flowing downstream in rivers, infiltrates into the bed river. Infiltrated water depends on morphologic and hydraulic characteristic of the rivers. Planners and managers want to know the amount of water infiltrates into the bed and consequently recharges ground water. In this study three rivers of Kashaf rud river basin, namely Ferizi, shandiz (Zoshk) and Golestan, were selected and their discharges were measured during period of 2009-2011 at the beginning and the end of a selected reach in each of the mentioned rivers by a current meter. Then transmission losses (TL) of the reaches were computed by subtracting the measured discharges. By surveying longitudinal profile and cross sections of the reaches and running the Hec-Ras model, wetted perimeter was determined for every discharge measurement for three selected reaches. Analysis of data showed that there is a significant exponential relationship between TL and the measured discharge at the beginning of the reach and wetted perimeter for one kilometer of the reach. The results showed that the percentage of TL decreases with increasing of the discharge in each river. As well as TL rate decreases from west to east; on the other hands in Ferizi river is the most and in Golestsn river is least. Developing an exponential model which is independent of the wetted perimeter, is one of the other results of the research.