Mohamad Rahmanian; AliReza Hosseinpour; Ebrahim Adhami; Hamidreza Motaghian
Abstract
Introduction: Rhizosphere is commonly defined as the zone where root activity significantly influences the biological and chemical properties of the soil. Biological, physical and chemical characteristics of rhizosphere, especially metal availability and metal chemical forms are different than the bulk ...
Read More
Introduction: Rhizosphere is commonly defined as the zone where root activity significantly influences the biological and chemical properties of the soil. Biological, physical and chemical characteristics of rhizosphere, especially metal availability and metal chemical forms are different than the bulk soil. Plant roots continuously release compounds such as sugars, amino acids, and carboxylic acids. Plant roots have the ability to transform metal fractions for easier uptake through root exudation in the rhizosphere. This study was conducted to investigate change in availability and fractions of Copper in the rhizosphere of sunflower (Helianthus annuus L.) in a sandy contaminated soil treated with chelators (EDTA, citric acid and poultry manure extract (PME)) in greenhouse condition.
Materials and Methods: In this study, EDTA and citric acid were used at concentrations of 0, 0.5 and 1 mmol kg-1 soil and PME was used at concentrations of0, 0.5 and 1 g kg-1 soil. Three seeds of sunflower were planted in the rhizobox. After 10 weeks, plants were harvested and rhizosphere and bulk soils were separated. Dissolved organic carbon (DOC), microbial biomass carbon (MBC), available Cu (by using 7 chemical procedures including DTPA-TEA,AB-DTPA, Mehlich1, Mehlich3, CaCl2 0.01 M, rhizosphere-based method and distilled water) and Cu-fractions were determined in the rhizosphere and bulk soils.
Results and Discussion: Rhizosphere soils properties were different with bulk soils. The results showed that the mean of DOC and MBC in the rhizosphere soils were higher than the bulk soils, but this difference was significant in some treatments. The mean value of pH in the rhizosphere soils was significantly (p
vahid mozafari; fariba khaleghi
Abstract
Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water ...
Read More
Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water and with low quality (28). On the other hand, nitrogen is a dynamic element which is a constituent of amino acids, proteins, nucleic acids and Enzymes and it has a vital role in plant physiology, growth, chlorophyll formation and production of fruit and seeds (34). Gibberellic acid is known as phytohormon which varied physiological responses in plants under stress. acid gibberellic increases the photosynthesis and growth under stress and impact on the physiology and metabolism of plant (29). Based on previous studies, production and activity of plant hormones are affected by natural factors and plant nutrient requirements and the nitrogen has an important influence on production and transmission of acid gibberellic plant shoot. Therefore, in this study the effect of acid gibberellic and nitrogen on some characteristics of physiology parameters and micronutrient pistachio seedlings (Cv. Qazvini) under saline conditions was studied.
Materials and methods: Experiment under greenhouse condition and factorial in a completely randomized design with three replications was conducted in greenhouse agriculture college, Vali-E-Asr University of Rafsanjan. Treatments consisted of three levels of salinity (0, 1000 and 2000 mg of sodium chloride per kg of soil), three levels of nitrogen (0, 75 and 150 mg per kg of ammonium nitrate source) and three acid gibberellic levels (0, 250 and 500 mg per liter). Adequate soil with little available salinity conditions was collected from the top 30-cm layer of a pistachio-culture region of Kerman province. After air drying and ground through passing a 2 mm sieve, some of the physical-chemical properties of this soil include pH (7/63), Tissue (Sandy loam), electrical conductivity (ECe) (1 dS m-1), Silt (23.1%), Clay (5.5%), Organic matter (0.5%), Olsen phosphorus (P) (5.35 mg kg-1), Ammonium acetate-extractable K (100 mg kg-1) were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting), divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week.
Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations of copper element increased. Hojjat nooghi and Mozafari (28) reported, the used salinity of 60 mM NaCl increased shoot Fe concentration, but by applying the same amount of salinity in the root iron concentration decreased compared with the control. Research has shown that the copper concentration in the leaves and shoot of corn planted in soil decreased with increasing salinity. Micronutrient absorption reduction such as copper in salt condition can result in greater absorption of nutrients such as sodium, magnesium and calcium. The researchers in the study reported that with increasing nitrogen in the form of nitrate and ammonium, zinc concentration in plant tissues increased along with increasing salinity and lower shoot dry weight, zinc concentration was increased in two wheat cultivars too.
Conclusion: The results of this experiment showed that under saline conditions, acid gibberellic and nitrogen applied alone or in combination improved physiology parameters and increased nutrient concentration of pistachio seedling.
shahrzad kabirinejad; mahmoud kalbasi; amir khoshgoftar manesh; M. Hoodaji; Majid Afyuni
Abstract
Introduction: Preceding crops as a source of organic matter are an important source of micronutrient and can play an important role in the soil fertility and the micronutrients cycle of soil. In addition to the role of the organic matter in increasing the concentration of micronutrients in soil solution, ...
Read More
Introduction: Preceding crops as a source of organic matter are an important source of micronutrient and can play an important role in the soil fertility and the micronutrients cycle of soil. In addition to the role of the organic matter in increasing the concentration of micronutrients in soil solution, attention also should be paid to the role of the kind and the quantity of the root’s exudates that are released in response to the incorporation of different plant residues in the rhizosphere. Present research was conducted with the objective of studying the effect of the kind of preceding crops: Trifolium (Trifolium pretense L), Sofflower (Carthamus tinectirus L), Sorghum (Sorghum bicolor L), Sunflower (Heliantus annus L) and control (fallow) on the chemical forms of copper in the wheat rhizosphere and the bulk soil and Cu uptake by wheat and also investigating the correlation between the fractions of Cu in soil and Cu uptake in wheat.
Materials and Methods: The present research was conducted as split plot in a Randomized Complete Block design (RCBD) with 3 replications and 5 treatments, in field conditions. In the beginning, the preceding crops were cultivated in the experimental plots and after ending growth, preceding crops were harvested. Then the wheat was cultivated in the experimental plots. Finally, after harvesting the wheat, soil samples were collected from the two parts of the root zone (the wheat rhizosphere and the bulk soil). The soil samples were air dried ground and passed through a 2-mm sieve and stored for chemical analysis. Soil pH (in the soil saturation extract) and organic matter (Walkley–Black wet digestion) were measured in standard methods (1). The Total Organic Carbon (TOC) was measured by Analyzer (Primacs SLC TOC Analyzer (CS22), Netherlands). The available Cu in soil was extracted by DTPA and determined using atomic absorption spectroscopy (2). The fractionation of soil Cu was carried out using the MSEP method (3).
Results and Discussion: The results showed that the preceding crops significantly decreased soil pH, also significantly increased the DOC and DTPA-extractable Cu.These changes were higher in the Trifolium preceding treatment in the rhizosphere soil. Also, the preceding crops significantly decreased Carbonate -Cuand Residual-Cu fractions in the wheat rhizosphere compared with the bulk soil. The preceding crops (except Trifolium) significantly increased Oxide-Cu fraction. The soil Oxide- Cu fraction was higher in the rhizosphere in comparison with the bulk soil. The preceding crops increased the Organic-Cu in both the wheat rhizosphere and the bulk soil and it was higher in Trifolium treatment. The preceding crops increased Cu uptake by wheat and Organic-Cu positively correlated with Cu uptake by wheat.
Conclusion: The Organic-Cu fraction increased in the rhizosphere compared with the bulk soil, whereas Oxide- Cu, Carbonate–Cu and Residual-Cu fractions decreased. According to the results, the observed increase in the copper concentration of organic fraction in the rhizosphere was due to the decrease in the copper concentration of carbonate, oxide and residual fractions. In fact, the main process is the transmission of copper from carbonate, oxide and residual fractions to another fraction. Also, the results showed that the root exudates of the preceding crops and wheat affected the different forms of copper in the soil solid phase. Furthermore, the results of copper forms correlation analysis with Cu uptake by wheat showed that the Organic-Cu fraction had more important role in supplying copper was needed for wheat. Therefore, the preceding crops increased the copper concentration of organic fraction in the rhizosphere compared with the bulk soil, and these changes are associated with increasing the amount of copper uptake in wheat.
H.R. Motaghian; A. Hosseinpour
Abstract
Change in microorganism activity and chemical properties can be affect on availability and fractionation of Copper (Cu). This research was conducted to investigate the availability and fractionation of Cu in the bean rhizosphere and bulk soils in 10 calcareous soils using rhizobox at greenhouse. Total ...
Read More
Change in microorganism activity and chemical properties can be affect on availability and fractionation of Copper (Cu). This research was conducted to investigate the availability and fractionation of Cu in the bean rhizosphere and bulk soils in 10 calcareous soils using rhizobox at greenhouse. Total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), pH, available Cu (by using 7 chemical extractants) and Cu-fractions were determined in the rhizosphere and bulk soils. The results indicated that in the bean rhizosphere soils, TOC, DOC and MBC increased significantly (p
H.R. Motaghian; A. Hosseinpour; jahangard mohammadi; Fayez Raiesi
Abstract
Rhizosphere is a small zone and has quite different chemical, physical and biological properties from bulk soil. This research was conducted to investigate the availability and fractionation of copper in the wheat rhizosphere and bulk soils by using rhizobox at greenhouse conditions. Three seeds of wheat ...
Read More
Rhizosphere is a small zone and has quite different chemical, physical and biological properties from bulk soil. This research was conducted to investigate the availability and fractionation of copper in the wheat rhizosphere and bulk soils by using rhizobox at greenhouse conditions. Three seeds of wheat were plant in the rhizobox. After 8 weeks, plants were harvested and rhizosphere and bulk soils were separated. Total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and available Cu (by using 7 chemical procedures) and Cu-fractions were determined in the rhizosphere and bulk soils. The results indicated that TOC, DOC and MBC in the rhizosphere were increased significantly (p