Determination of Optimum Model of Water Uptake under Conjunctive Salinity and Water Stress Conditions in Wheat Cultivars

Document Type : Research Article

Authors

1 Department of Water Science and Engineering. Faculty of Agriculture. Univercity of Birjand. Iran

2 Tehran University

Abstract

Abstract
Various mathematical water uptake models have been introduced for plants response to combined drought and salinity stress. The reduction functions are classified as additive, multiplicative and conceptual models. In this study six different macroscopic reduction functions, namely; Van Genuchten (additive and multiplicative), Dirksen et al., Van Dam et al, Skaggs et al and Homaee were evaluated. The experiment was carried out at Research farm of Birjand University in a factorial split plot design with 3 replicates. The treatments consisted of four levels of irrigation (50, 75, 100 and 120%of crop water requirement), and three water qualities (1.4, 4.5, 9.6 dS/m) and two wheat cultivars. The results indicated that the additive model estimates relative yield less than the actual amount. In other word, the effect of combined stresses on wheat yield was less than the summation of separate effects due to salinity and water stress. The effect of drought stress on yield reduction was more than salinity stress. The results also revealed that reduction function of Skaggs et al and Homaee's models agreed well with the measured data when compared with other functions.

Keywords: Salinity stress, Drought stress, Reduction function, Wheat, Birjand

CAPTCHA Image