ارزیابی مدل فائو برای پیش بینی عملکرد محصول، بیلان آب و املاح تحت تنشهای محیطی (مطالعه موردی گندم زمستانه)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 دانشگاه بیرجند

3 اسلام آزاد دانشگاهی، تحق و علـوم واحـدی قـات، و جـوان پژوهشـگران باشـگاه ا تهران، نخبگان،یران

چکیده

در این مطالعه مدل اگروهیدرولوژیکی فائو به منظور پیش بینی عملکرد محصول، بیلان آب و املاح خاک، با استفاده از داده های میدانی محصول گندم زمستانه، تحت تنش های آبی و شوری بررسی و ارزیابی گردید. برای این منظور آزمایش های مزرعه ای با سه سطح شوری آب آبیاری شامل: S1، S2 و S3، به ترتیب 4/1، 5/4 و 6/9 دسی زیمنس بر متر و چهار سطح عمق آبیاری شامل: I1، I2، I3 و I4، به ترتیب 50، 75، 100 و 125 درصد نیاز آبی گیاه، بر روی دو رقم گندم شامل روشن و قدس، با سه تکرار، در مزرعه آزمایشی دانشگاه بیرجند، طی سال 85-1384 انجام گردید. بر اساس نتایج، متوسط خطای نسبی مدل در پیش بینی عملکرد دانه برای ارقام روشن و قدس، به ترتیب 2/9 و 1/26 درصد به دست آمد. بیشترین خطای مدل در پیش بینی عملکرد دانه، در هر دو رقم قدس و روشن، برای تیمارهای S1I1، S2I1 و S3I1 به دست آمد. خطای نسبی پیش-بینی عملکرد رقم روشن، برای تیمارهای S1I1، S2I1 و S3I1 به ترتیب 20، 1/28 و 6/26 درصد و رقم قدس به ترتیب 61، 5/94 و 9/99 درصد به دست آمد که نشان دهنده خطای بیش برآورد قابل ملاحظه مدل، تحت تنش شدید کم آبی می باشد. متوسط خطای نسبی مدل در پیش بینی مقدار تخلیه آب خاک، برای 12 تیمار مختلف برابر 1/7 درصد و در پیش بینی شوری عصاره اشباع خاک برابر 8/5 درصد به دست آمد که نشان دهنده تخمین نسبتاً دقیق مدل در پیش بینی مقدار رطوبت و شوری خاک می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of FAO Model for Prediction of Yield Production, Soil Water and Solute Balance under Environmental Stresses (Case Study Winter Wheat)

نویسندگان [English]

  • V. Rezaverdinejad 1
  • M. Hemmati 1
  • H. Ahmadi 1
  • A. Shahidi 2
  • B. Ababaei 3
1 Urmia University
2 University of Birjand
3 Islamic Azad University, Tehran
چکیده [English]

In this study, the FAO agro-hydrological model was investigated and evaluated to predict of yield production, soil water and solute balance by winter wheat field data under water and salt stresses. For this purpose, a field experimental was conducted with three salinity levels of irrigation water include: S1, S2 and S3 corresponding to 1.4, 4.5 and 9.6 dS/m, respectively, and four irrigation depth levels include: I1, I2, I3 and I4 corresponding to 50, 75, 100 and 125% of crop water requirement, respectively, for two varieties of winter wheat: Roshan and Ghods, with three replications in an experimental farm of Birjand University for 1384-85 period. Based on results, the mean relative error of the model in yield prediction for Roshan and Ghods were obtained 9.2 and 26.1%, respectively. The maximum error of yield prediction in both of the Roshan and Ghods varieties, were obtained for S1I1, S2I1 and S3I1 treatments. The relative error of Roshan yield prediction for S1I1, S2I1 and S3I1 were calculated 20.0, 28.1 and 26.6%, respectively and for Ghods variety were calculated 61, 94.5 and 99.9%, respectively, that indicated a significant over estimate error under higher water stress. The mean relative error of model for all treatments, in prediction of soil water depletion and electrical conductivity of soil saturation extract, were calculated 7.1 and 5.8%, respectively, that indicated proper accuracy of model in prediction of soil water content and soil salinity.

کلیدواژه‌ها [English]

  • Evapotranspiration
  • Water stress
  • Salt stress
  • Simulation Model
1- Borg H. and Grimes D.W. 1986. Depth development of roots with time: an empirical description. Transactions of the ASAE, 29: 194–197.
2- FAO. 1977. Crop water requirement. Irrigation and Drainage Paper No. 24, Rome.
3- FAO. 1979. Yield response to water. Irrigation and Drainage Paper No. 33, Rome.
4- FAO. 1992. CROPWAT. A computer program for irrigation planning and management. Irrigation and Drainage Paper No. 46, Rome.
5- FAO. 1993. CLIMWAT for CROPWAT. A climatic database for irrigation planning and management. Irrigation and Drainage Paper No. 49, Rome.
6- FAO. 1998. Crop evapotranspiration; guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56, Rome.
7- Kroes J.G. and Van Dam J.C. 2008. Reference manual SWAP version 3.2., Alterra Green World Research, Wagenningen, Report 1649, Availabel at: http://www.swap.alterra.nl
8- Kirda C. and Kanber R. 1999. Water, no longer a plentiful resource, should be used sparingly in irrigated agriculture. Crop yield response to deficit irrigation, Dordrecht, The Netherlands, Kluwer Academic Publishers.
9- Kirda C., Kanber R. and Tulucu K. 1999.Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation. Crop yield response to deficit irrigation, Dordrecht, The Netherlands, Kluwer Academic Publishers.
10- Kirda C. 2002. Deficit Irrigation Scheduling Based On Plant Growth Stages Showing Water Stress Tolerance. Crop yield response to deficit irrigation, Dordrecht, The Netherlands, Kluwer Academic Publishers.
11- Paz J.O., Batchelor W.D., Colvin T.S., Logsdon S.D., Kaspar T.C. and Karlen D.L. 1998. Analysis of water stress effects causing spatial yield variability in soybeans. Transactions of the ASAE, 41: 1527–1534.
12- Sarvar A., Bastiaanssen W.G.M., Boers Th.M. and Van Dam J.C. 2000a. Evaluating drainage design parameters for the fourth drainage project, Pakistan by using SWAP model: Part I–calibration. Irrigation and Drainage Systems, 14: 257–280.
13- Sarvar A., Bastiaanssen W.G.M., Boers Th.M. and Van Dam J.C. 2000b. Evaluating drainage design parameters for the fourth drainage project, Pakistan by using SWAP model: Part II–modeling results. Irrigation and Drainage Systems, 14: 281–299.
14- Sepaskhah A.R., Bazrafshan-Jahromi A.R. and Shirmohammadi-Aliakbarkhani Z. 2006. Development and Evaluation of a Model for Yield Production of Wheat, Maize and Sugarbeet under Water and Salt Stresses. Biosystems Engineering. 93 (2): 139–152.
15- Stockle C.O., Martin S.A. and Campbell G.S. 1994. CropSyst, a Cropping System Simulation Model: Water/Nitrogen Budgets and Crop Yield. Agricultural Systems, 46: 335–359.
16- Skaggs R.W. 1978. A Water Management Model for Shallow Water Table Soils. Technical Report No. 134 of the Water Resources Research Institute of the University of North Carolina. North Carolina State University.
17- Vazifedoust M., Van Dam J.C., Feddes R.A. and Feizi M. 2008. Increasing Water Productivity of Irrigated Crops under Limited Water Supply at Field Scale. Agricultural Water Management. 95: 89-102.