برآورد اجزاء ردپای آب در تولید محصول گندم در سطح کشور

نوع مقاله : مقالات پژوهشی

نویسندگان

1 همکار پژوهشی موسسه ملی تحقیقات کشاورزی فرانسه، مونت پلیه، فرانس

2 دانشگاه بین المللی امام خمینی

چکیده

در این مطالعه، اجزاء ردپای آب سبز (بارندگی مؤثر)، آبی (نیاز خالص آبیاری)، خاکستری (برای رقیق‌سازی کودهای شیمیایی) و سفید (تلفات آبیاری) در تولید محصول گندم در 15 استان عمده تولیدکننده گندم در سطح کشور برآورد گردید. مفهوم ردپای آب سفید در این مقاله پیشنهاد گردیده و معرف تلفات آب آبیاری می‌باشد. نتایج نشان می‌دهد مجموع حجم ردپای آب در تولید محصول در سطح کشور در دوره 1385-1390 (2005-2011) در حدود 42143 میلیون متر مکعب برآورد گردید. در اراضی فاریاب، سهم ردپای آب سبز، آبی، خاکستری و سفید به ترتیب 23، 25، 17 و 35 درصد از مجموع ردپای آب در تولید گندم در هر استان است. در بین 15 استان برگزیده، متوسط مجموع ردپای آب در اراضی فاریاب در حدود 3188 مترمکعب بر تن می‌باشد که سهم آب سبز و آب آبی تقریباً برابر است. در اراضی فاریاب، سه استان فارس، خراسان و خوزستان به ترتیب با 5575، 5028 و 4123 میلیون مترمکعب در سال بیشترین ردپای آب در تولید گندم کشور را دارا هستند. در این سه استان میزان زیاد ردپای آب خاکستری و سفید علاوه بر بالا بودن سطح زیر کشت و پتانسیل تبخیر و تعرق، از دلایل دیگر بالابودن مجموع ردپای آب در تولید گندم است. در این سه استان به ترتیب حدود 58، 59 و 57 درصد از مجموع ردپای آب در تولید گندم آبی در استان سهم ردپای آب خاکستری و سفید است. در اراضی دیم، متوسط مجموع ردپای آب در حدود 3071 مترمکعب بر تن برآورد می‌شود که در آن، سهم آب سبز و خاکستری به ترتیب 90 و 10 درصد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Water Footprint Compartments in National Wheat Production

نویسندگان [English]

  • B. Ababaei 1
  • H. Ramezani Etedali 2
1 Montpellier, France
2 Imam Khomeini International University (IKIU)
چکیده [English]

Introduction: Water use and pollution have raised to a critical level in many compartments of the world. If humankind is to meet the challenges over the coming fifty years, the agricultural share of water use has to be substantially reduced. In this study, a modern yet simple approach has been proposed through the introduction concept ‘Water Footprint’ (WF). This concept can be used to study the connection between each product and the water allocation to produce that product. This research estimates the green, blue and gray WF of wheat in Iran. Also a new WF compartment (white) is used that is related about irrigation water loss.
Materials and Methods: The national green (Effective precipitation), blue (Net irrigation requirement), gray (For diluting chemical fertilizers) and white (Irrigation water losses) water footprints (WF) of wheat production were estimated for fifteen major wheat producing provinces of Iran. Evapotranspiration, irrigation requirement, gross irrigation requirement and effective rainfall were got using the AGWAT model. Yields of irrigated and rain-fed lands of each province were got from Iran Agricultural-Jihad Ministry. Another compartment of the wheat production WF is related about the volume of water required to assimilate the fertilizers leached in runoff (gray WF). Moreover, a new concept of white water footprint was proposed here and represents irrigation water losses, which was neglected in the original calculation framework. Finally, the national WF compartments of wheat production were estimated by taking the average of each compartment over all the provinces weighted by the share of each province in total wheat production of the selected provinces.
Results and Discussion: In 2006-2012, more than 67% of the national wheat production was irrigated and 32.3% were rain-fed, on average, while 37.9% of the total wheat-cultivated lands were irrigated and 62.1% was rain-fed from more than 6,568 -ha. The total national WF of wheat production for this period was estimated as 42,143 MCM/year, on average. Different compartments of wheat WF were estimated for 236 plains in fifteen selected provinces. For irrigated areas, the green WFs ranged from 499 to 1,023 m3/ton, the blue WFs from 521 to 1,402 m3/ton, the gray WFs from 337 to 822 m3/ton, and the white WFs from 701 to 2,301 m3/ton. The average total WF for irrigated areas among all the selected provinces is about 3,188 m3/ton, with almost equal shares of blue and green water. For rain-fed areas, the green WFs ranged from 1,282 to 4,166 m3/ton and the gray WFs from 100 to 740 m3/ton. The average total WF for rainfed areas is about 3,071 m3/ton with the share of green WF being nine times the gray WF. In irrigated areas, the percentages of green, blue, gray and white WFs are 23, 25, 17 and 35% of total WF, respectively in each province. The average total WF for irrigated areas is about 3,188 m3/ton with comparable shares of blue and green water. In irrigated areas, Fars, Khorasan and Khuzestan provinces have the largest of the total WF with 5,575, 5,028 and 4,123 MCM/year, respectively. In addition to large cultivated areas and high rates of potential evapotranspiration, high values of gray and white water is another reason for the high volume of total WF in these provinces.
Conclusions: The results showed that the green WF related about wheat production in our country is about 2.3 times the blue WF. It confirmed the importance of green water in wheat production. Also the gray water footprint was assessed which is related about nitrogen application. Besides, the white water footprint was proposed here, which represents irrigation water losses. Results showed that the total water footprint in wheat production for the whole country is about 42,143 MCM/year on average over the period of 2006-2012. The ratios of green, blue, gray and white water were 41, 18, 16 and 25%, respectively. Different compartments of wheat WF were estimated for 236 plains over fifteen selected provinces. Total shares of gray and white water footprint were 41% of total wheat production water footprint. The average total WF for irrigated areas among all selected provinces is about 3,188 m3/ton, with almost equal shares of blue and green water. The authors admit that the accuracy of these results is subject to the quality of the input data.

کلیدواژه‌ها [English]

  • National Scale
  • Provincial Scale
  • virtual water
  • Water footprint
1- Aldaya M.M., Allan J.A., and Hoekstra A.Y. 2010. Strategic importance of green water in international crop trade. Ecological Economics, 69(4): 887–894.
2- Aldaya M.M., and Hoekstra A.Y. 2010. The water needed for Italians to eat pasta and pizza. Agr. Syst, 103: 351–360.
3- Allan J.A. 2003. Virtual water – the water, food, and trade nexus: Useful concept or misleading metaphor? Water International, 28(1): 106–113.
4- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Drainage and Irrigation Paper 56, Food and Agriculture Organization, Rome.
5- Chapagain A.K., and Hoekstra A.Y. 2004. Water footprints of nations, Value of Water Research Report Series No. 16, UNESCO-IHE, Delft, The Netherlands.
6- Chapagain A.K., Hoekstra A.Y., and Savenije H.H.G. 2006. Water saving through international trade of agricultural products. Hydrol. Earth System Science, 10: 455–468, DOI: 10.5194/hess-10-455-2006.
7- De Fraiture C., Cai X., Amarasinghe U., Rosegrant M., and Molden D. 2004. Does international cereal trade save water? The impact of virtual water trade on global water use. Comprehensive Assessment Research Report, Vol. 4, International Water Management Institute, Colombo.
8- Gerbens-Leenes W., Hoekstra A.Y., and Van der Meer T.H. 2009. The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106(25): 10219-10223.
9- Gleick P.H. (ed.). 1993. Water in crisis: A guide to the world’s fresh water resources, Oxford University Press, Oxford, UK.
10- Hoekstra A.Y. 2003. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12–13 December 2002, Value of Water Research Report Series No.12, UNESCO-IHE, Delft, The Netherlands.
11- Hoekstra A.Y., and Chapagain A.K. 2007. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resources Management, 21(1): 35–48.
12- Hoekstra A.Y., and Chapagain A.K. 2008. Globalization of water: Sharing the planet’s freshwater resources. Blackwell Publishing, Oxford, UK.
13- Hoekstra A.Y., Chapagain A.K., Aldaya M.M., and Mekonnen M.M. 2009. Water footprint manual: State of the art 2009, Water Footprint Network, Enschede, the Netherlands.
14- Hoekstra A.Y., Chapagain A.K., Aldaya M.M., and Mekonnen M.M. 2011. The water footprint assessment manual: setting the global standard, Water Footprint Network, Enschede, the Netherlands.
15- Hoekstra A.Y., and Hung P.Q. 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11, UNESCO-IHE, Delft, the Netherlands.
16- Hoekstra A.Y., and Hung P.Q. 2005. Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Changes, 15(1): 45–56.
17- Hoff H., Falkenmark M., Gerten D., Gordon L., Karlberg L., and Rockstr’om J. 2010. Greening the global water system. Journal of Hydrology, 384: 177–186.
18- Jenkinson D.S. 2001. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant and Soil, 228(1): 3–15.
19- Liu J., and Yang H. 2010. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. Journal of Hydrology, 384: 187–197.
20- Liu J., Williams J.R., Zehnder A.J.B., and Yang H. 2007. GEPIC – modeling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94: 478–493.
21- Liu J., Zehnder A.J.B., and Yang H. 2009. Global consumptive water use for crop production: The importance of green water and virtual water. Water Resources Research. 45, W05428, DOI: 10.1029/2007WR006051.
22- Mekonnen M. M., and Hoekstra A.Y. 2010. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and Earth System Sciences, 14: 1259-1276.
23- Mitchell T. D., and Jones P.D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25: 693–712.
24- Molden D. 2007. Water for food, water for life: A comprehensive assessment of water management in agriculture, Earthscan, London, UK.
25- Norse D. 2005. Non-point pollution from crop production: Global, regional and national issues. Pedosphere, 15(4): 499–508.
26- Oki T., and Kanae S. 2004. Virtual water trade and world water resources. Water Science and Technology, 49(7): 203–209.
27- Portmann F., Siebert S., Bauer C., and Doll P. 2008. Global data set of monthly growing areas of 26 irrigated crops. Frankfurt Hydrology Paper 06, Institute of Physical Geography, University of Frankfurt, Frankfurt am Main, Germany.
28- Postel S.L. 2000. Entering an era of water scarcity: The challenges ahead. Ecological Applications, 10(4): 941–948.
29- Sacks W.J., Deryng D. Foley J.A., and Ramankutty N. 2009. Crop planting dates: An analysis of global patterns. Global Ecology and Biogeography, 19(5): 607-620.
30- Siebert S., and Doll P. 2008. The global crop water model (GCWM): Documentation and first results for irrigated crops, Frankfurt Hydrology Paper 07, Institute of Physical Geography, University of Frankfurt, Frankfurt am Main, Germany.
31- Siebert S., and Doll P. 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 384: 198–207.
32- Wackernagel M., and Jonathan L. 2001. Measuring sustainable development: Ecological footprints. Centre for Sustainability Studies, Universidad Anahuac de Xalapa, Mexico.
33- Wackernagel M., Onisto L., Linares A.C., Falfan I.S.L., Garcia J.M., Guerrero I.S., and Guerrero M.G.S. 1997. Ecological footprints of nations: How much nature do they use? How much nature do they have? Centre for Sustainability Studies, Universidad Anahuac de Xalapa, Mexico.
34- Wackernagel M., and Rees W. 1996. Our ecological footprint: Reducing human impact on the Earth. New Society Publishers, Gabriola Island, B.C., Canada.
35- WWAP. 2009. The United Nations World Water Development Report 3: Water in a changing world, World Water Assessment Programme, UNESCO Publishing, Paris/Earthscan, London.
36- Yang H., Wang L., Abbaspour K.C., and Zehnder A.J.B. 2006. Virtual water trade: an assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10: 443–454, DOI: 10.5194/hess-10-443-2006.