تعیین مؤثرترین جزء خاکدانه در برآورد پایداری ساختمان خاک با بهره گیری از روش زمین آمار

نوع مقاله : مقالات پژوهشی

نویسندگان

ولی عصر (عج) رفسنجان

چکیده

خاکدانه به‌عنوان واحد ساختمانی خاک، بیانگر مجموعه‌ای از ذرات اولیه است که پیوستگی‌شان به یکدیگر بیش از پیوستگی آن‏ها به ذرات خاک اطراف این مجموعه می‌باشد. هدف از پژوهش حاضر، تعیین مهمترین جزء اندازه‌ای خاکدانه‌ (درشت و یا ریز) در برآورد میزان پایداری ساختمان خاک در منطقه‌ی رابر کرمان با بهره‌گیری از زمین‌آمار می‌باشد. تعداد 90 نمونه‌ی خاک سطحی (10-0 سانتی‌متر) به روش شبکه‌ای منظم و با فواصل تقریبی 200 متر، از منطقه برداشت و هواخشک شد. پس از عبور نمونه‌ها از الک چهار میلی‌متری، درصد پایداری خاکدانه‌ها در سه بخش خاکدانه‌های کل، درشت و ریز در دو حالت خشک و مرطوب محاسبه شد. سپس، مطالعات زمین‌آماری شاخص‌های پایداری محاسبه‌شده، در قالب دو مرحله‌ی واریوگرافی و تخمین انجام گرفت و نقشه‌های کریجینگ پایداری خاکدانه‌ها ترسیم شد. به‌منظور تعیین میزان همخوانی نقشه‌های کریجینگ شاخص پایداری محاسبه‌شده برای خاکدانه‌های درشت و ریز با شاخص محاسبه‌شده برای کل خاکدانه‌ها، پس از تشکیل ماتریس خطا، صحت عمومی آن‌ها محاسبه شد. براساس نتایج حاصل،بیش‏ترین درصدپایداری کل خاکدانه‌ها (9/89 درصد) در موقعیت‌های شمال و جنوب‌شرقی منطقه‌ که بیش‏ترین مقدار ماده‌ی آلی (2/3 درصد) را به خود اختصاص داده بودند، در حالت خشک دیده شد. درصد صحت عمومی حاصل از تقاطع نقشه‌های کریجینگ کل خاکدانه‌ها و خاکدانه‌های درشت در حالت خشک (75/51 درصد)، بیش از حالت مرطوب (17/32درصد) بود. در مقابل، درصدصحت عمومی محاسبه-شده برای تقاطع نقشه‌های کریجینگ کل خاکدانه‌ها و خاکدانه‌های ریز در حالت مرطوب (31/17 درصد)، بیش از حالت خشک (93/10 درصد) بود. به-طور کلی، مطالعه‌ی تغییرات مکانی پایداری خاکدانه‌های درشت و ریز می‌تواند در راستای مدیریت بهینه‌ی اراضی برای مطالعات آتی مفید واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Use of Geostatistical Methodto Determinethe Most Effective Aggregate Component for Estimating Soil Structural Stability

نویسندگان [English]

  • Saeideh Bardsirizadeh
  • Isa Esfandiarpour Borujeni
  • Ali Asghar Besalatpour
  • Peyman Abbaszadeh Dahaji
Vali-e-Asr University of rafsanjan
چکیده [English]

Introduction: Aggregate, as the basic unit of soil structure,represents a collection of primary particles which their adherence to each other is more than their connection to environ soilparticles. Aggregate stability is a highly complex parameter influencing a wide range of soil properties, including carbon stabilization, soil porosity, water infiltration, aeration, compatibility, water retention, hydraulic conductivity andresistance to erosion by water and overland flows. Maintaining high stability of soil aggregate is essential for preserving soil productivity, minimizing soil erosion and degradation and thus minimizing environmental pollution as well. Nevertheless, aggregate stability is described as one of the soil properties that can serve as an indicator of soil quality.The main purpose of this study is to determine the most important component of soil aggregate (macro and/ormicro) in estimating the soil structural stability in the Rabor region, Kerman province, using geostatistical method.
Materials and Methods: Ninetysurface soil samples (0 to 10 cm) were taken on a 200 m square sampling grid in the study area for the geostatistical studies.After air drying the soil samples and passing them through a 4 mm sieve, the percentage of aggregates belong tothree parts of total, macro, and micro classes and aggregate staility were calculated in both dry and wet conditions.Some stability indices were calculated and their spatial variabilities were investigated using two variography and estimation stages methods. Finally, the kriged map of each aggregate stability indicator was produced. To determine the compatibility of kriged maps of the soil aggregates stability indices calculated for the macro and micro aggregates with aggregates stability index (i.e., AS index) calculated forthe total aggregates, the overall accuracy related to each aggregate component (i.e., macro and micro) was calculatedafter creating an error matrix.
Results and Discussion: The results showed that total aggregate stability in the dry condition and macro aggregate stability in the wet condition had the lowest and highest coefficients of variability,respectively. The highest percentage of total aggregate stability (i.e., 89.90 %)was observed in the north and southeast positions of the study areain the dryconditionwhich had the highest amount of organic matter(i.e., 2.30 %). Also, the variograms of all investigated variables were exponentially and their ranges were varied between 380 to 450 m. Although the obtainedranges were different, a sampling distance more or less equal to 420 m is reasonable to study the most of the variables in the area. This can be a good indicator to decrease the sampling tasks for monitoring of these parameters in future.An overall look at the obtained root mean square standardized error (RMSSE) values indicated a high correlation between the measured and estimated values of all investigatedvariables (except for macro aggregate stability in the wet condition). However, all variables had a strong spatial correlation class. The percentage of overall accuracy obtained from crossing the total and macro aggregate kriged maps in the dry condition (i.e., 51.75 %), was more than its percentage for similar maps in the wet condition (i.e., 32.17 %). In return, the percentage of overall accuracy obtained from crossing the total and micro aggregate kriged maps in the wet condition (i.e., 17.31 %)was greater than its percentage for the mentioned maps in the dry condition (i.e., 10.93 %). Because of macro aggregate sensitivities to the amount of pressure imposed on them (as in the wet sieving method, the aggregates are under pressure caused by water energyin addition to tensions related to mechanical motion of sieving), the conformities of above two mentioned maps were less than those in the dry sieving method.
Conclusions: In general, the soil aggregates stability depends strongly on the amount of pressure imposed on them. Besides, the study of spatial variability of macro and micro aggregate stabilities and relative effects of each on the soil structure stability can be useful for choosing proper land management activities in future studies. According to theeffect of aggregation on nutrient cycling, capture, storage and water movement, and also other soil characteristics affecting plant growth and sustainable agriculture on one hand, and the effect of organic matter on aggregation on the other hand, it can be concluded thatall human activities that have a role in reducing or removing organic matter from the soil (e.g., grazing, deforestation, and intensive cultivation etc.) may reduce soil aggregate stability and finally can jeopardize human life in a near future.

کلیدواژه‌ها [English]

  • Aggregate stability
  • Error matrix
  • land use
  • Kriging
1- Afandi T., Manik K., Rosadi B., Utomo M., Senge M., AdachiT., and Oki Y. 2003. Soil physical properties under coffee trees with different weed managements in a hilly humid tropical area of Lampung, south Sumatra, Indonesia. Journalof JapaneseSocietyof Soil Physics,92: 3-16.
2- Amezketa E. 1999. Soil aggregate stability: a review. Journal of Sustainable Agriculture, 14: 83–151.
3- An S., Mentler A., Mayer H., and Blum W.E.H. 2010. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 81: 226- 233.
4-Bach E.M., and Hofmockel K.S. 2014. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biology and Biochemistry, 69: 54-62.
5- Bast A., Wilcke W., Graf F., Luscher P., and Gartner H. 2015. A simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils. Catena, 127: 170- 176.
6- Besalatpour A.A., Ayoubi S., Hajabbasi M.A., Mosaddeghi M.R., and Schulin R. 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111: 72-79.
7- Bronick C.J., and Lal R. 2005. Soil structure and management: a review. Geoderma, 124: 3-22.
8- Carter M. R., Angers D. A., and Kunelius H. T. 1994. Soil structural form and stability and organic matter under cool-season perennial grasses. Soil Science Society of America Journal, 58: 1194-1199.
9- Cheng M., Xiang Y., Xue Zh., An Sh., and Darboux F. 2015. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 124:77-84.
10- Dıaz-Zorita M., Perfect E., and Grove J.H. 2002. Disruptive methods for assessing soil structure. Soil and Tillage Research, 64:3–22.
11- Duiker S.W., Rhoton F.E., Torrent J., Smeck N.E., and Lal R., 2003. Iron (hydr) oxide crystallinity effects on soil aggregation. Soil Science Society of America Journal, 67: 606– 611.
12- Efron B., and Stein C. 1981. The jackknife estimate of variance. The Annals of Statistics, 9 (3): 586–596.
13- Ekhtesasi M. R., and Azimzadeh H. R. 2012. Investigation on the dry and wet sieving soil granolometry indices and its application in water and wind erosion studies (Case study: Yazd plain). Arid Biome Scientific and Research Journal, 2)2):1-9.
14- Emadodin I., Reiss S., and Bork, R.H. 2009.A study of the relationship between landmanagement and soil aggregate stability (casestudy near Albersdorf, northern-Germany).ARPN Journal of Agricultural and BiologicalScience, 4: 48-53.
15- Fokom R., Adamou S., Teugwa M.C., Begoude Boyogueno A.D., Nana W.L., Ngonkeu M.E.L., Tchameni N.S., Nwaga D., Tsala Ndzomo G., and Amvam Zollo P.H. 2012. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil and Tillage Research, 120: 69–75.
16- Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228: 113-129.
17- Herrick J.E., Whitford W.G., De Soyza A.G., Van Zee J.W., Havstad K.M., Seybold C.A., Walton M. 2001. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena, 44 (1): 27–35.
18- Hosseini F., Mosaddeghi M.R., Hajabbasi M.A., and Sabzalian M.R. 2015. Influence of tall fescue endophyte infection on structural stability as quantified by high energy moisture characteristic in a range of soils. Geoderma, 249(250): 87–99.
19- Huang L., Wang C.Y., Tan W.F., Hu H.Q., Cai C.F., and Wang M.K. 2010. Distribution of organic matter in aggregates of eroded Ultisols, Central China. Soil and Tillage Research, 108: 59- 67.
20- Husnjak S., and Hengle T. 2006. Evaluation adequacy and usability of soil maps in Croatia. Soil Scince Society of America Journal, 70: 920- 929.
21- John B., Yamashita T., Ludwig B., and Flessa H. 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128: 63–79.
22- Karimi R., Salehi M.H., and Mosleh Z. 2015. Effect of land use change on some carbon components in bulk soil and aggregates in Safashahr area, Fars province. Journal of Soil Management and Sustainable, 5)1(: 1- 14.
23- Kemper W.D., and Rosenau K. 1986. Size distribution of aggregates. P. 425-442. In: Klute, A. (ed), Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods, American Society of Agronomy, Madison, WI.
24- Legros J.P. 1996. Mapping of the Soil (In English. 2006. Translated by Sarma). V.A.K. Science Publishers, Enfield.
25- Lobe I., Hofmann A.S., Brodowski S., du Preez C.C., and Amelung W. 2011. Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld. Geoderma, 162(3-4): 251- 259.
26- Ludwig B., Andruschkewitsch R., Geisseler D., Koch H.J. 2013. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma, 192: 368–377.
27- Ma R., Cai Ch., Li Zh., Wang J., Xiao T., Peng G., and Yang W. 2015. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research,149: 1–11.
28- Mahmoodabadi M. 2011. Effect of different organic matter on aggregate stability when changes in different size classes.Watershed Research,93: 1-9).in Persian.(
29- Mahmoodzadeh H., Sheklabadi M., and Mahboubi A.A. 2012. Aggregate distribution and stability in different Land Uses of Zrebar Lake Margin. Journal of Water and Soil Conservation, 19(2): 1-8.)in Persian(.
30- Mohammadi J. 2006. Pedometrics, Volume II) Spatial statistics (.Pelk Publishers, Tehran.
31- Mollae M., Boshra H., Basiri M., and Mosaddeghi M.R. 2014.Assessment of structural stabilitywet sieving pasturein some placesEsfahan. Journal of Science and Technology of Agriculture and Natural Resources, Soil and WaterSciences, 70: 1-12.
32- Pannatier Y. 1996. VARIOWIN: Software for Spatial Data Analysis in 2D. Springer Verlag, New York.
33- Park H.M. 2008. Univariate analysis and normality test using SAS, Stata, and SPSS. A Working Paper of University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University,41 p.
34- Robinson T.P., and Metternicht G. 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computer and Electronics in Agriculture, 50: 97-108.
35- Rossiter D.G. 2000. Methodology for Soil Resource Inventories, 2nd Revised Version, Soil Science Division, International institute for Aerospace Survey and Earth Science (ITC), P.132.
36- Salehi M.H., Hashemi Beni O., Beigi Harchegani H., Esfandiarpour Borujeni I. and Motaghian H.R. 2011. Refining soil organic matter determination by loss-on-ignition. Pedosphere, 21(4): 473-482.
37- Schloeder C.A., Zimmerman N.E., and Jacobs M.J. 2001. Comparison of methods for interpolating soil properties using limited data. Soil Science Society of America Journal, 65: 470- 479.
38- Spaccini R., and Piccolo A. 2013. Effects of field managements for soil organic matter stabilization on water-stable aggregate distribution and aggregate stability in three agricultural soils. Journal of Geochemical Exploration, 129: 45-51.
39- Wang J.G., Yang W., Yu B., Li Zh.X., Cai Ch.F., and Ma R.M. 2016. Estimating the influence of related soil properties on macro- and micro-aggregate stability in ultisols of south-central China. Catena, 137: 545–553.
40- Webster R., and Oliver M.A. 2001. Geostatistics for Environmental Scientists. John Wiley and Sons Ltd., Chichester, UK.
41- Wei J.B., Xiao D.N., Zeng H., and Fu Y.K. 2008. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of to black soil region, northeastern China. Environmental Geology, 53: 1663-1672.
42- Yague M.R., Bosch-Serra A.D., Antunez M., and Boixadera J. 2012. Pig slurry and mineral fertilization strategies' effects on soil quality: Macroaggregate stability and organic matter fractions. Science of the Total Environment Journal, 438: 218-224.
43- Yazdanpanah N., and Homaunfar F. 2010.Estimation ofaggregate stability in both dry and wet methodsby the use of different plantresidues. The Second General Conference on Integrated Water Resource Management. 9-10 Feb. Shahid Bahonar University of Kerman, P. 1-7)in Persian(.