نقش غنی‌سازی پوسته زیستی خاک از طریق تلقیح و تحریک باکتری‌ها در افزایش نیتروژن خاک حساس به فرسایش

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تربیت مدرّس

چکیده

بهبود مؤلفه‌های شیمیایی و فیزیکی پوسته‌های زیستی خاک از عوامل مؤثر در افزایش کیفیت و کاهش هدررفت خاک می‌باشد. امروزه غنی‌سازی پوسته‌های زیستی خاک مبتنی بر تلقیح و یا تحریک ریزجاندارن خاک به‌عنوان راه‌کاری زیستی و مؤثر در علوم حفاظت خاک مطرح شده است. بر این اساس پژوهش حاضر با هدف بررسی نقش تلقیح جداگانه باکتری‌‌ها و غنی‌سازی مواد غذایی و هم‌چنین تلقیح ترکیبی باکتری‌ها با غنی‌سازی مواد غذایی بر تغییرات نیتروژن خاک به‌عنوان یکی از مهم‌ترین مؤلفه‌های شیمیایی کیفیت خاک، در مقیاس کرت‌های کوچک برنامه‌ریزی شد. خاک کرت‌ها از منطقه‌ی حساس به فرسایش تهیه شد. باکتری‌های مؤثر در تثبیت نیتروژن از خاک منطقه جداسازی، و به‌همراه ماده محرّک غذایی به تیمارهای تعریف شده تلقیح شدند. مقادیر نیتروژن خاک در بازه زمانی 60 روزه بین تلقیح تا انتهای آزمایش، در فاصله‌های زمانی هفت یا هشت روزه اندازه‌گیری شد. نتایج تجزیه و تحلیل‌های آماری حاکی از افزایش معنی‌دار (05/0>p) نیتروژن کل خاک در تیمارهای مطالعاتی بود. در تیمار تلقیح باکتری، غنی‌سازی مواد غذایی و تلقیح باکتری به‌همراه غنی‌سازی مواد غذایی، میزان تثبیت نیتروژن بعد از یک ماه به‌صورت معنی‌دار (05/0>p) به‌ترتیب 148، 110 و 284 درصد نسبت به تیمار شاهد افزایش یافت. هم‌چنین بعد از یک ماه میزان نیتروژن خاک شروع به کاهش کرد. در نهایت پس از دو ماه مقدار نیتروژن خاک در تیمارها ثابت شده و مقدار آن در تیمار تلقیح جداگانه باکتری و ترکیب با غنی‌سازی مواد غذایی به‌صورت معنی‌دار (01/0>p) به‌ترتیب 18 و 16 درصد بیش‌تر از تیمار شاهد اندازه‌گیری شد. در مجموع غنی‌سازی پوسته‌های زیستی خاک با تلقیح باکتری‌ها به‌عنوان روشی کاملاً زیستی، ایمن و با صرفه‌ اقتصادی و زمانی در بهبود مؤلفه‌های شیمیایی خاک تأیید شد.

کلیدواژه‌ها


عنوان مقاله [English]

Role of Soil Crusts Bio-Enrichment by Bacteria Inoculating and Stimulating in Nitrogen Increasing in the Erosion-Prone Soils

نویسندگان [English]

  • Hossein Kheirfam
  • Mehdi Homaee
  • Seyed Hamidreza Sadeghi
  • Behrouz Zarei Darki
Tarbiat Modares University
چکیده [English]

Introduction: Land degradation and soil losses are common and universal problems which is a pose threat to food security, ecosystem health and consequently sustainable development and human well-being. Meanwhile, improving the chemical and physical properties of biological soil crusts is an effective factor in soil loss controlling. Also, the chemical properties specially soil nitrogen are the important factors for soil quality determination. To this end, various strategies on techniques of amendments have been implemented to improve soil properties and quality. Although the application of most strategieshave been verified to soil quality,but their application in real conditions is restricted due to detrimental environmental effects, instability, cost and time-consuming and less accessibility. Recently, biological soil crusts enrichment based on soil microorganism inoculation and stimulation has been raised as a biological and useful strategy in soil conservation sciences. Accordingly, the present study aimed to investigate the role of individual and combined inoculation of bacteria and stimulant nutrient material into small-scale plots on soil nitrogen variation as one of the important soil chemical component.
Material and Methods: The study soil was collected from the erosion-prone and poor biological crust of a sub-watershed from Chalusrood watershed located in Mazandaran Province. The soil sampling was carried out from the upper of the soil surface using a 5cm-diameter coring polyvinyl chloride. The sampled soils were air-dried and sieved by a 2 mm-sized mesh. The Nutrient Agar and Tryptic Soy Agar general were used to bacteria isolation. The identification of isolated bacteria was carried out based on available protocols. Effective nitrogen-fixing bacteria were selected and then purified by selective Azotobacter Agar, Modified II and DSMZ1media. The purified bacteria proliferated by LB Broth medium and then inoculated into soil small sized-plots simultaneously with stimulant nutrient material throught spraying technique. The study was conducted at plot scale with 0.5×0.05×0.5 m dimensions and the plots filled by study soil based on standard protocols. The soil samples were taken at once the 7-8 days from surface of soil plots and the amounts of soil nitrogen were measured by using Kjeldahl method. As well as, experiment period was planned about 60 days. The one-way ANOVA and Tukey HSD test were subjected to statistically analyses.
Results and discussion: The results indicated that the Azotobacter sp. and Bacillussubtilis strain were selected as the most appropriate bacteria to be applied for nitrogen fixing in soil. Also, the results showed that the average total organic nitrogen in control plots ranged from 0.082 to 0.136%, which implies the soil limitation of total nitrogen. However, the measured total organic nitrogen in the bacteria, stimulant nutrient, and combined inoculation plots varied from 0.11 to 0.241%, 0.117 to 0.204%, and 0.124 to 0.374%, respectively. These results demonstrated the positive role of inoculated treatments on fixing nitrogen in the soil. Therefore, the population of Azotobacter sp., the Bacillussubtilis strain, was considerably increased after the inoculation process, and this led to converted and fixed atmospheric nitrogen (N2) into utilizable nitrogen (NH4 or NO3) in soil by using the enzyme nitrogenase as a catalyst. The statistical analyses and evaluation results were indicative of a significant (p

کلیدواژه‌ها [English]

  • Microorganisms Inoculating
  • Soil Bio-technology
  • Soil Erosion
  • Soil Amendments
  • Soil Stability
1- Acea M.J., Prieto-Fernandez A., and Diz-Cid N. 2003. Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biology and Biochemistry, 35(4): 513-524.
2- Atlas R.M. 2010. Handbook of microbiological media, 4th ed. Taylor and Francis Group publication, LLC, 2036 p.
3- Awad N.M., Abd El-Kader A.A., Attia M., and Alva A.K. 2011. Effects of nitrogen fertilization and soil inoculation of sulfur-oxidizing or nitrogen-fixing bacteria on onion plant growth and yield. International Journal of Agronomy, 2011: 316856, 6. http://dx.doi.org/10.1155/2011/316856.
4- Awad Y.M., Blagodatskaya E., Ok Y.S., and Kuzyakov Y. 2012. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. European Journal of Soil Biology, 48: 1-10.
5- Bahig A.E., Aly E.A., Khaled A.A., and Amel K.A. 2008. Isolation, characterization and application of bacterial population from agricultural soil at Sohag Province, Egypt. Malaysian Journal of Microbiology, 4(2): 42-50.
6- Barger N.N., Castle S.C., and Dean G.N. 2013. Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecological Processes, 2(1): 1-9.
7- Bationo A. (Ed.). 2007. Advances in integrated soil fertility management in sub-saharan africa: challenges and opportunities: challenges and opportunities. Springer Science and Business Media. 1108 p.
8- Belnap J., Wilcox B.P., Van Scoyoc M.W., and Phillips S.L. 2013. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology, 6(3): 474-482.
9- Benson H.J. 2002. Microbiological applications: laboratory manual in general microbiology. 8th ed. short version, McGraw Hill, Boston, MA, USA, 384 p.
10- Bergey D.H., and Breed R.S. 1957. Bergey’s manual of determinativebacteriology. 7th ed. American Society for Microbiology. Baltimore,Williams and Wilkins Co. 1134 p.
11- Bihamta M.R., and Zare Chahouki M.A. 2015. Principles of statistics for the natural resources science, 4th ed. University of Tehran Press, 300p (In Persian with English abstract)
12- Cagri-mehmetoglu A., Kusakli S., and Van de Venter M. 2012. Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. Journal of Dairy Science, 95(7): 3643-3649.
13- Chamizo S., Canton Y., Lazaro R., Sole-Benet A., and Domingo, F. 2012a. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems, 15: 148-161.
14- Chamizo S., Canton Y., Miralles I., and Domingo F. 2012b. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49: 96-105.
15- Dadrasan M., Chaichi M.R., Pourbabaee A.A., Yazdani D., and Keshavarz-Afshar R. 2015. Deficit irrigation and biological fertilizer influence on yield and trigonelline production of fenugreek. Industrial Crops and Products, 77: 156-162.
16- Epelde L., Burges A., Mijangos I., and Garbisu C. 2013. Microbial properties and attributes of ecological relevance for soilquality monitoring during a chemical stabilization field study. Applied Soil Ecology, 75: 1-12.
17- Franche C., Lindström K., and Elmerich C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1-2): 35-59.
18- Garbeva P., Tyc O., Remus-Emsermann M.N.P., van der Wal A., Vos M., Silby M., and de Boer W. 2011. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS ONE 6(11): e27266.
19- Gholami L., Sadeghi S.H.R., and Homaee M. 2016. Different effects of sheep manure conditioner on runoff and soil loss components in eroded soil. Catena, 139, 99-104.
20- Giacometti C., Demyan M.S., Cavani L., Marzadori C., Ciavatta C., and Kandeler E. 2013. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Applied Soil Ecology, 64: 32-48.
21- Hasti Water Technology Consulting Engineers. 2011. Watershed management studies (detailed) - pedology and land capability of K1-1 sub-watershed of Chalusrood watershed. Nowshahr, 89 p. (in Persian)
22- Huixia P., Zhengming Ch., Xuemei Zh., Shuyong M., Xiaoling Q., and Fang W. 2007. A study on an oligotrophic bacteria and its ecological characteristics in an arid desert area. Science in China Series D: Earth Sciences, 50: 128-134.
23- Kheirfam H., Sadeghi S.H.R, Homaee M., and Zarei Darki, B. 2017. Quality improvement of an erosion-prone soil through microbial enrichment. Soil and Tillage Research, 165: 230-238.
24- Kheirfam H., Sadeghi S.H.R, Zarei Darki, B., and Homaee M. 2017. Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152: 40-46.
25- Kumar R., Bhatia R., Kukreja K., Behl R.K., Dudeja S.S., and Narula N. 2007. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypiumhirsutum L.) and wheat (Triticumaestivum L.). Journal of Basic Microbiology, 47(5): 436-439.
26- Liu C.W., Sung Y., Chen B.C., and Lai H.Y. 2014. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4), 4427-4440.
27- Lutton E., Schellevisa R., and Shanmuganathan A. 2013. Culture-dependent methods increase observed soil bacterial diversity from Marcellus shale temperate forest in Pennsylvania, Journal of Student Research, 2(1): 9-16.
28- Moore E.R.B., Tindall B.J., Martins Dos Santos V.A.P., Pieper D.H., Ramos J.L., and Palleroni N.J. 2006. Nonmedical: Pseudomonas. Chapter 3.3.21. Prokaryotes. 6: 646-703.
29- Naik S.N., Goud V.V., Rout P.K., and Dalai A.K. 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2): 578-597.
30- Nisha R., Kaushik A., and Kaushik C.P. 2007. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma, 138(1): 49-56.
31- Oelze J. 2000. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiology Reviews, 24(4): 321-333.
32- Prasanna R., Joshi M., Rana A., Shivay Y.S., and Nain L. 2012. Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World Journal of Microbiology and Biotechnology, 28(3): 1223-1235.
33- Rodriguez-Caballero E., Canton Y., Chamizo S., Afana A., and Sole-Benet A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology, 145-146: 81-89.
34- Rossi F., Olguın E.J., Diels L., and De Philippis R. 2015. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology, 32(1): 109-120.
35- Russell P., Hertz P., and McMillan B. 2013. Biology: the dynamic science. Cengage Learning, 560 p.
36- Sadeghi S.H.R., Gholami L., Homaee M., and Khaledi Darvishan A.V. 2015a. Reducing sediment concentration and soil loss using organic and inorganic amendments at plot scale, Solid Earth, 6: 445-455.
37- Sadeghi S.H.R., Gholami L., Sharifi E., Khaledi Darvishan A., and Homaee M. 2015b. Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6: 1-8.
38- Sadeghi S.H.R., Hashemi Arian Z., and Karimi Z. 2015c. Runoff generation and soil loss control using combined application of vermicompost and vinasse. Water Reuse. 2(1): 81-91. (in Persian with English abstract)
39- Sadeghi S.H.R, Kheirfam H., Homaee M. and Zarei Darki B., and Vafakhah, M., 2017. Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil and Tillage Research, 171: 35-41.
40- Saez-Plaza P., Michałowski T., Navas M.J., Asueroa A.G., and Wybraniec S. 2013. An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Critical Reviews in Analytical Chemistry, 43(4): 173-223.
41- Satapute P.P., Olekar H.S., Shetti A.A., Kulkarni A.G., Hiremath G.B., Patagundi B.I., Shivsharan C.T., and Kaliwal B. 2012. Isolation and characterization of nitrogen fixing bacillus subtilis strain as-4 from agricultural soil. International Journal of Recent Scientific Research, 3(9): 762-765.
42- Schrey S.D., Erkenbrack E., Früh E., Fengler S., Hommel K., Horlacher N., Schulz D., Ecke M., Kulik A., Fiedler H.P., Hampp R., and Tarkka M.T. 2012. Production of fungal and bacterial growthmodulating secondary metabolites is widespreadamong mycorrhiza-associated streptomycetes, BMC Microbiology, 12: 164.
43- Sears J.T., and Prithiviraj B. 2012. Seeding of large areas with biological soil crust starter culture formulations: using an aircraft disbursable granulate to increase stability, fertility and CO2 sequestration on a landscape scale. IEEE Green Technologies Conference, 19-20 Apr. 2012, Tulsa, OK, 1-3.
44- Sojka R.E., Bjorneberg D.L., Entry J.A., Lentz R.D., and Orts W.J. 2007. Polyacrylamide in agriculture and environmental land management. Advances in Agronomy, 92: 75-162.
45- Tan K.H. 2011. Principles of soil chemistry. CRC Press. 390 p.
46- Thiet R.K., Boerner R.E.J., Nagy M., and Jardine R. 2005. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant and Soil, 278(1-2), 235-251.
47- Valencia Y., Camapum J., and Torres F.A. 2014. Influence of biomineralization on the physico-mechanical profile of a tropical soil affected by erosive processes, Soil Biology and Biochemistry, 74: 98-99.
48- Veum K.S., Goyne K.W., Kremer R.J., Miles R.J., and Sudduth K.A. 2014. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry, 117(1): 81-99.
49- Vieira F.C.S., and Nahas E. 2005. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research, 160, 197-202.
50- Wang W.B., Liu Y.D., Li D.H., Hua C.X., and Rao B.Q. 2009. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry, 41: 926-929.
51- Zhao Y., Qin N., Weber B., and Xu M. 2014. Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodiversity and Conservation, 23(7): 1669-1686.