تاثیر انتخاب ایستگاه در بهینه‌سازی پارامترهای مدل پالس مستطیلی بارتلت-لویس اصلاح شده (BLRPM) و عملکرد مدل هیدرولوژیکی HSPF

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

در این پژوهش جهت مطالعه فرآیند بارش-رواناب در حوضه آبخیز طالقان از برنامه شبیه‌سازی هیدرولوژیکی فرترن (HSPF) استفاده شده است. علیرغم دقت بالای مدل HSPF، مشکلات موجود در خصوص اندازه گیری بارش در مقیاس‌های زمانی کوتاه مدت (مقیاس ساعتی و کمتر از آن) در حوضه های آبخیز، استفاده از مدل مذکور مخصوصا در شبیه‌سازی های هیدرولوژیکی طولانی مدت را با مشکل مواجه ساخته است. بدین منظور از مدل پالس مستطیلی بارتلت – لویس با پارامتر تصادفی (BLRPM) جهت گسسته سازی داده های بارش و تبدیل بارش‌های روزانه به بارش‌های ساعتی مورد نیاز مدل استفاده گردید. پارامترهای مدل با استفاده از داده های بارش ساعتی، 24 و 48 ساعته ثبت شده در دوره آماری (2006-2009) در ایستگاه‌های باران‌نگار داخل (جوستان و زیدشت) و مجاور حوضه (کلک چال) برآورد گردید. سپس با استفاده از مدل واسنجی شده به گسسته سازی داده‌های بارش روزانه ثبت شده در درون حوضه، در دوره آماری 1995-2005 پرداخته شد. داده‌های بارش ساعتی حاصل از فرایند گسسته‌سازی، جهت شبیه‌سازی دبی‌های روزانه توسط مدل HSPF به کار گرفته شد. نتایج نشان داد استفاده از داده‌های بارش ساعتی ثبت شده در ایستگاه کلک چال جهت برآورد پارامترهای مدل BLRPM، موجب تولید بارش‌های با شدت زیاد در فرآیند گسسته‌سازی بارش و برآورد بیشتر دبی‌های اوج توسط مدل هیدرولوژیکی می‌گردد. حذف ایستگاه مذکور از فرایند بهینه سازی مدل BLRPM باعث بهبود عملکرد مدل HSPF با ضریب ناش – ساتکلیف 76/0، ضریب تبیین 79/0 و خطا (RMSE) 11/7 گردید. نتایج این مطالعه بیانگر حساسیت مدل HSPF به انتخاب ایستگاه و پارامتر شدت بارش می-باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Weather Station Selection on Parameterization of Modified Bartlett-Lewis Rectangular Pulse (BLRPM) and HSPF Models

نویسندگان [English]

  • Esmaeel Dodangeh
  • .Kaka Shahedi
  • Karim Solaimani
Sari Agricultural Science and Natural Resources University
چکیده [English]

Introduction: The proper management of water resources in a watershed requires precise understanding and modelling of the hydrological processes. HSPF model uses an infiltration excess mechanism to simulate streamflow and requires the hourly precipitation data as input. Despite the high accuracy of the HSPF model, the lack of rainfall data at short time scales (hour and less than hour) restricts implementation of the model especially for long time simulations. Some studies have applied simple division for daily rainfall disaggregation into the hourly values to provide data required by the HSPF model. In simple division, each rainfall event is divided into 24 pulse stochastically and the peak flows may not be simulated correctly due to the lower rainfall intensities.
Materials and Methods: In this study, Random Parameter Bartlet-Lewis Rectangular Pluse (BLRPM) model was used for daily rainfall disaggregation into the hourly values to provide data needed by the HSPF model. The model parameters were calibrated using the 1, 24 and 48 hour rainfall data time series of the rain gauge stations inside (Jovestan and Zidasht) and outside (Kalk Chal) the watershed for the period of 2006-2009. To cluster the wet days, the BLRPM model was run several times and a generated sequence which had the best match with the original one in terms of daily totals was selected. Then, the synthetic sequence of hourly rainfall depths was modified based on a proportional adjusting procedure to add up exactly to the given daily depths. The calibrated model was then implemented to disaggregate the daily rainfall data of the watershed for the period of 1995-2005. The resultant hourly rainfall data were then fed into the HSPF hydrologic model to simulate the daily runoff. Parameterization of the BLRPM and HSPF models was also done while keeping the Kalk Chal station out of the calibration.
Results and Discussion: Sum of weighted squared error was calculated to be 1.03 when the data recorded in Kalk Chal station was also considered for parameter estimation of the BLRPM model. Maximum weighted square error was equal to 0.7 for lag-1 auto covariance of daily rainfall data. Keeping the Kalk Chal station out of the BLRPM model parameterization resulted in improved performance of the model. Sum of the weighted error decreased to 0.36 by removing the Kalk Chal station data. The results indicated that the weighted square error values decreased for all of the BLRPM model parameters when Kalk Chal station was not considered for calibration. The lag-1 auto covariance of daily rainfall data had the greatest reduction in weighted square error from 0.7 to 0.07 with and without including the Kalk Chal data set, respectively. The BLRPM model parameters also varied when data of the Kalk Chal station were removed from the calibration process. The k parameter value increased and the values of λ,  and v decreased due to removal of the Kalk chal station data. The highest variation was observed for v decreased from 2.74 to 0.33 by removing the Kalk Chal station. The calibrated BLRPM model, with and without taking into account the Kalk Chal station data set, was employed to disaggregate daily rainfall data into the hourly values. The HSPF model was calibrated using the daily observed streamflow data recorded in Galinak station to simulate daily streamflow in reach 27. The daily streamflow simulations in reach 27 were conducted by implementing the hourly generated rainfall data sets. The results showed that inclusion of the hourly rainfall data recorded in Kalk chal station for parameterization of the BLRPM model caused the reproduction of high-intensity rainfall data in disaggregation process and consequently led to the overestimation of peak flows by HSPF model. Exclusion of the Kalk Chal station for BLRPM model parameterization improved the daily streamflow simulation with Nash-Sutcliff efficiency = 0.76, coefficient of determination = 0.79 and RMSE = 7.11 m3.s-1. These results demonstrated the sensitivity of HSPF model to the weather station selection and rainfall intensities.
Conclusions: The Kalk Chal station located outside of the studied region, with high intensity-short duration rainfall pattern caused heterogeneity of the input hourly rainfall data for parameter estimation of BLRPM model. Parameter estimation of the BLRPM model with inclusion of the hourly rainfall data of Kalk Chal station resulted in generation of greater intensities in disaggregation process. Despite the same values of daily rainfall data in streamflow simulations, the high rainfall intensities caused by the data set of Kalk Chal station led to the overestimation of peak flows. The results indicated the high sensitivity of HSPF model to the rainfall intensities.

کلیدواژه‌ها [English]

  • Infiltration
  • Hourly precipitation
  • Peak flow
  • Rainfall disaggregation
1- Abdellatif M., Atherton W., Alkhaddar R. 2013. Application of the stochastic model for temporal rainfall disaggregation for hydrological studies in north western England. Journal of Hydroinformatics, 15(2): 555-567.
2- Alavinia M. 2009. Comparison between HSPF and SWAT models for sediment (Case study:Abro watershed). Tarbiat Modarres University, Tehran, Iran. (in Persian).
3- Aqua Terra Consultants. 1996. HSPF Data Structure: The Operation Status Vector (OSV). Unpublished. Aqua Terra Consultants, Mountain View, CA.
4- Arnold J.G., Srinivasin R., Muttiah R.S., Williams J.R. 1998. Large area hydrologic modeling and assessment: Part I. Model development. Journal of American Water Resources Associate, 34 (1): 73–89.
5- Ashofteh P., Massah Bouani A.R. 2010. Impact of Climate Change on Maximum Discharges: Case Study of Aidoghmoush Basin, East Azerbaijan. Journal of Water and Soil Science, 14 (53):28-38 (in Persian with English abstract).
6- BASINS Technical Note 6. 2006. Estimating hydrology and hydraulic parameters for HSPF, Environmental protection agency, USA.
7- Bennett S.J., Bishop T.F.A., Vervoort R.W. 2013. Using SWAP to quantify space and time related uncertainty in deep drainage model estimates: A case study from northern NSW, Australia. Journal of Agricultural Water Management, 2013(130): 142–153.
8- Bicknell B.R., Imhoff J.C., Kittle J.J.L., Jobes T.H., Donigian J.A.S. 2005. Hydrological Simulation Program – FORTRAN (HSPF). User’s Manual for Release 12.2. U.S. EPA National Exposure Research Laboratory, Athens, GA, in cooperation with U.S. Geological Survey, Water Resources Division, Reston, VA.
9- Choi J., Sokolofsky S.A., Olivera F. 2008. Hourly disaggregation of hourly rainfall in Texas using measured hourly precipitation at other locations. Journal of Hydrologic Engineering, 13(6):476-487.
10- Claudia F.A., Dame R.F. 2014. Bartlett-Lewis of rectangular pulse modified model: estimate of parameters for simulation of precipitation in sub-hourly duration. Engenharia Agricola, 34 (5): 925-934.
11- Cowpertwait P.S.P., Lockie T., Davies M.D. 2006. A stochastic spatial-temporal disaggregation model for rainfall. Journal of Hydrology New Zealand, 45: 1–12.
12- Donigian J.A.S., Bicknell B.R., Imhoff J.C. 1995. Hydrological Simulation Program-FORTRAN (HSPF). p. 395-442. In: Singh, V.P., Ed., Computer Models of Watershed Hydrology, Water Resources Publications and Highlands Ranch, 1995; 395-442.
13- Donigian A.S., Crawford N.H. 1976. Modelling Nonpoint Pollution from the Land Surface. EPA/600/3-76-083, Environmental Research Laboratory, Athens.
14- Donigian A.S., Davis H.H. 1978. User’s Manual for Agricultural Runoff Management (ARM) Model. EPA-600/3-78-080, USEPA, Athens, GA. p.12.
15- Dousti M., Shahedi K., Habibnejad Roshan M., Miryaghoubzadeh M.R. 2012. Using IHACRES semi-conceptual model to simulate daily flow (Case study: Tamar Basin). Journal of Soil and Water Conservation, 21(2): 277-292 (in Persian with English abstract).
16- Engida A.N., Esteves M. 2011. Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia. Journal of Hydrology, 399: 226–234.
17- Farzbod A., Faridhoseini A.R., Javan K., Sharifi M.B. 2015. A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran. American Journal of Climate Change, 4: 203-216.
18- Feldman A.D. 2000. Hydrologic Modeling System HEC-HMS, Technical Reference Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC,Davis, CA, USA.
19- Gericke O.J., Pretorius E., Wagenaar D., Loyd C. 2004. Hydrological modelling of river basins using HSPF model. p. 1571-1578. In Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference.
20- Huang P., Li Z., Chen J., Li Q., Yao C. 2017. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments. Journal of Hydrology, In press.
21- Im S.J., Brannan K.M., Mostaghimi S., Kim S.M. 2007. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. Journal of Environmental Science and Health, Part A: Environmental Science Engineering, 42 (11): 1561–1570.
22- Iskra I., Droste R. 2007. Application of non-linear automatic optimization techniques for calibration of HSPF. Water Environmental Research, 79 (6):647–659.
23- Jakeman A.J., Hornberger G.M. 1993. How much complexity is warranted in a rainfall runoff model?Water Resources Research, 29(8):2637-2649.
24- Jebari S. 2009. Water Erosion Modelling using Fractal Rainfall Disaggregation, a Study in Semiarid Tunisia. Lund Institute of Technology, Lund University, Sweden.
25- Johnson M.S., Coon W.F., Mehta V.K., Steenhuis T. S., Brooks E.S., Boll J. 2003. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. Journal of Hydrology, 284(1–4): 57–76.
26- Khaliq M.N., Cunnane C. 1996. Modelling point rainfall occurrences with the Modified Bartlett-Lewis Rectangular Pulses Model. Journal of Hydrology, Amsterdam, 180:109-138.
27- Khosravi M. 2008. Flood Forecasting using Artificial Neural Network and Empirical Equations, Watershed management MSc thesis, Faculty of Natural Resources, Tehran University. (in Persian with English abstract).
28- Kossieris P., Makropoulos C., Onof C., Koutsoyiannis D. 2016. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures. Journal of Hydrology. doi: http://dx.doi.org/10.1016/j.jhydrol.2016.07.015
29- Koutsoyiannis D., Onof C. 2001. Rainfall disaggregation using adjusting procedures on a Poisson cluster model. Journal of Hydrology, 246: 109–122.
30- Kozanis S., Christofides A., Mamassis N., Efstratiadis A., Koutsoyiannis D. 2010. Hydrognomon – open source software for the analysis of hydrological data, Geophysical Research Abstracts.
31- Lian Y.Q., Chan I., Xie H., Demissie M. 2010. Improving HSPF modeling accuracy from FTABLES: a case study for the Illinois River Basin. Journal of Hydrological Engineering – ASCE, 15 (8): 642–650.
32- Mishra A., Kar S., Raghuwanshi N.S. 2009. Modeling nonpoint source pollutant losses from a small watershed using HSPF model. Journal of Environmental Engineering – ASCE, 135 (2): 92–100.
33- Nasr A., Bruen M., Jordan P., Moles R., Kiely G., Byrne P. 2007. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Resources, 41 (5): 1065–1073.
34- Pui A., Sharma A., Mehrotra R., Sivakumar B., Jeremiah E. 2012. A comparison of alternatives for daily to sub-daily rainfall disaggregation. Journal of Hydrology, 470-471: 138–157.
35- Razavizadeh S., Salajegheh A., Khalighi S., Jafari M. 2013. Effects of land use changes on flood characteristics using the HEC-HMS model (Case study: Taleghan watershed). Journal of Range and Watershed management, 66(3):373-386 [in Persian with English abstract].
36- Rodriguez-Iturbe I., de Power B.F., Valdes J.B. 1987. Rectangular pulses point process models for rainfall: Analysis of empirical data. Journal of Geophysical Research, 92: 9645-9656.
37- Ryu J.H. 2009. Application of HSPF to the distributed model intercomparison project: case study. Journal of Hydrological Engineering – ASCE, 14 (8): 847–857.
38- Saleh A., Du B. 2004. Evaluation of SWAT and HSPF within BASINS program for the Upper North Bosque River watershed in Central Texas. Transactions of ASAE, 47 (4): 1039–1049.
39- Segond M.L, Neokleous N., Makropoulos C., Onof C., Maksimovic C. 2007. Simulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applications. Hydrological Science Journal, 52: 917–935.
40- Singh J., Knapp H.V., Arnold J.G., Misganaw D. 2005. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. Journal of American Water Resources Associate, 41 (2): 343–360.
41- Sivakumar B., Berndtsson R. 2010. Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting. World Scientific.
42- Sokolofsky S., Adams E. 2011. Disaggregation of daily rainfall for continues watershed modeling. Journal of hydrological engineering, 6(4): 300-309
43- Wang H., Wu z., Hu C. 2014. A Comprehensive Study of the Effect of Input Data on Hydrology and non-point Source Pollution Modeling. Water resources management, 29:1505. DOI 10.1007/s11269-014-0890-x
44- World Meteorological Organization. 1975. Inter comparison of Conceptual Models Used in Operational Hydrological Forecasting. Secretariat of the World Meteorological Organization, Geneva.
45- Xu, C.Y. 2002. Hydrologic models. Earth Science Centre. Uppsala University. Sweden.
46- Zarei M., Ghanbarpour M.R., Habibnezhad Roshan M., Shahedi K. 2009. Streamflow Simulation using IHACRES Rainfall-Runoff Model (Case Study: Kasilian Catchment). Journal of Watershed management and Science Engineering, 3 (8):11-20 (in Persian with English abstract).