تأثیر روی و فسفر بر عملکرد، جذب عناصر غذایی و کارایی زراعی روی در سیب زمینی

نوع مقاله : مقالات پژوهشی

نویسنده

مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان

چکیده

پژوهش حاضر به‌منظور بررسی تأثیر سولفات روی بر عملکرد، غلظت عناصر غذایی و بازیابی و کارایی زراعی روی در مقادیر مختلف فسفر خاک، بر روی سیب‌زمینی (Solanum tuberosum L.) رقم آگریا در استان همدان انجام شد. در این تحقیق سه قطعه آزمایشی با مقادیر مختلف فسفر قابل جذب انتخاب و پژوهش با 9 تیمار و سه تکرار و بر پایه طرح بلوک‌های کامل تصادفی اجرا گردید. قطعات شامل دو قطعه با فسفر کم (15-10 میلی‌گرم در کیلوگرم خاک با و بدون کوددهی فسفر (از منبع سوپرفسفات تریپل)) و یک قطعه با فسفر زیاد (25-20 میلی‌گرم در کیلوگرم خاک بدون کوددهی فسفر) بود. تیمارهای روی شامل مصرف خاکی مقادیر صفر، 20، 40، 60، 80، 100و 120 کیلو گرم در هکتار سولفات روی (ZnSO4.7H2O) و محلول پاشی با سولفات روی با غلظت 5 در هزار یک هفته قبل و یک هفته بعد از گلدهی ‌بود. بعد از برداشت عملکرد غده و شاخساره، میزان جذب روی و غلظت عناصر غذایی در بخش‌های مختلف سیب‌زمینی اندازه‌گیری و بازیابی و کارایی زراعی روی محاسبه شد. نتایج نشان داد که عملکرد سیب‌زمینی تحت تأثیر تیمارهای مختلف روی قرار گرفته است. کاربرد 40 کیلوگرم سولفات روی در هکتار بیشترین و تیمار محلول‌پاشی با سولفات روی یک هفته بعد از گلدهی کمترین عملکرد غده را موجب شده‌اند و اختلاف این دو تیمار 17 درصد بود. محلول‌پاشی با سولفات روی یک هفته بعد از گلدهی عملکرد مشابه با تیمار شاهد داشت و بین این دو تیمار اختلاف معنی‌دار در سطح احتمال 5 درصد وجود نداشت. کاربرد مقادیر بیش از 80 کیلوگرم در هکتار سولفات روی یا محلول‌پاشی آن، روی جذب شده در غده را به‌طور معنی‌داری تحت تأثیر قرار دادند و محلول‌پاشی با سولفات روی یک هفته بعد از گلدهی با 80 درصد افزایش در مقایسه شاهد، بیشترین روی جذب شده در غده‌ را داشت. غلظت روی غده و شاخساره در سطح یک درصد تحت تأثیر تیمارهای مختلف روی قرار گرفت. بیشترین غلظت روی در شاخساره و غده در شرایط محلول‌پاشی با سولفات روی یک هفته بعد از گلدهی و کمترین آن در شرایط عدم مصرف روی مشاهده شد. این تیمار به‌ترتیب باعث افزایش 160 و 24 درصدی روی شاخسارها و غده سیب‌زمینی در مقایسه با شاهد شد. عملکرد غده و شاخساره در سطح احتمال یک درصد تحت تأثیر معنی‌دار قطعات با فسفر مختلف قرار گرفتند. مصرف فسفر و یا غلظت بالای آن در خاک عملکرد غده و شاخساره را افزایش دادند و باعث کاهش غلظت اکثر عناصر غذایی غده و شاخساره شدند. با افزایش مصرف خاکی کود روی به بیش از 40 کیلوگرم در هکتار کارایی زراعی آن به‌طور معنی‌دار و بیش از دو برابر کاهش پیدا کرد. بیشترین کارایی زراعی روی در شرایط محلول‌پاشی سولفات روی مخصوصاً در زمان قبل از گلدهی مشاهده شد و این افزایش در تیمار محلول‌پاشی قبل از گلدهی حداقل 6 برابر تیمار مصرف خاکی روی بود. بازیابی روی در تمام سطوح مصرف خاکی روی کمتر از دو درصد بود که به بالای 20 درصد در تیمارهای محلول‌پاشی سولفات روی افزایش یافت. برای دستیابی به حداکثر عملکرد سیب‌زمینی در خاکهای مشابه مصرف 40 کیلوگرم در هکتار سولفات روی قابل توصیه است. در شرایط مصرف فسفر و یا فسفر بالای خاک این توصیه باید افزایش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Zinc and Phosphorus Levels on Yield, Nutrients Uptake and Zinc Recovery and Agronomic Efficiency in Potato

نویسنده [English]

  • rahim motalebifard
Hamedan Agricultural and Natural Resource Research and Education Center
چکیده [English]

Introduction: Potato production has fourth rank in the world after rice, wheat, and maize with the production of 321 million tons from 19.6 million hectares. In Iran this important crop has third rank after wheat and tomatoes with the production of 4.6 million tons. Potato is a temperate crop, growing and yielding well in cool and humid climates or seasons, but it is also cultivated in tropical to sub-polar climatic regions, and represents a major food crop in many countries. Potato is sensitive to nutrients deficiency especially phosphorus and zinc. At least one-third of the cultivated soils globally are estimated to contain too low amounts of bioavailable zinc for optimal crop production. In Iran more than 70 percent of irrigated soils suffer from zinc deficiency. Many reasons have role in mentioned deficiency such as calcareous and alkaline soils, lower organic carbon and higher application of phosphorus fertilizer. So, evaluation of zinc fertilizers efficiency is essential under different soil phosphorus conditions.
Materials and Methods: This project was carried out in order to investigate the effect of zinc sulfate levels on yield, nutrients concentration and zinc recovery and agronomic efficiency under different phosphorus conditions in potato (Solanum tuberosum L.) in Hamedan province (Tajarak station). The current research was done as a randomized complete block design with 9 treatments, three replications and three locations (with different soil phosphorus levels). The phosphorus locations were involved two locations with 10-15 mg available P per kg of soil (without or with phosphorus application) and a locations with 20-25 mg available P per kg of soil. Zinc treatments were consisted of soil application of 0, 20, 40, 60, 80, 100 and120 kg of zinc sulfate (ZnSO4.7H2O) per hectare and foliar spray of zinc sulfate at the rate of 5 grams per liter at one week before and one week after flowering. After harvesting, the tuber and shoot yield, tubers and shoot zinc uptake, nutrients concentration were measured in different parts of potato plant, and recovery and agronomic efficiency of applied zinc fertilizer were calculated.
Results and Discussion: The results showed that the zinc treatments significantly affected the tuber yield of potato. The application of 40 kg.ha-1 zinc sulfate and foliar spray of Zn one week after flowering evidenced the highest and the lowest yield, respectively and the difference between these treatments were 17 percent. The differences between without Zn application and foliar spray of Zn one week after flowering were not significant on yield which showed that the time of fertilizer foliar application is very important and by delaying of foliar spray the yield could not increase. The zinc treatments affected significantly tuber zinc uptake and the foliar spray of Zn one week after flowering by 80 percent increase comparing with control, had the highest tubers zinc uptake. The tuber and shoot zinc concentration were significantly affected by the zinc sulfate levels. The highest and lowest concentration of zinc in shoot and tubers were observed in the foliar spray of Zn one week after flowering and control. This treatment caused 160 and 24 percent increasing in shoot and tubers zinc concentration in comparison with control. In spite of considered increase in zinc content by foliar application of zinc one week after flowering, the potato yield did not increase considerably. The tuber and shoot yield were affected significantly by different phosphorus locations (p

کلیدواژه‌ها [English]

  • Foliar spray
  • Nutrients concentration
  • Potato tubers
  • Soil application
1- Alloway B.J. 2008. Zinc in Soils and Crop Nutrition. Second Edition. Published by IZA and IFA, France. 135 P.
2- Anonymous. 2013. Iran agriculture statistics, Jihade-Agriculture Ministry, Iran.
3- Asadi Kangarshahi A., Amiri N., Malakouti M.J., and Moradi B. 2007. Effect of amount and rate of zinc sulphate on yield and quality of tangerine cv. Oshno. Soil Water Science, 21(1):1-14. (in Farsi with English abstract)
4- Barben S.A., Hopkins B.G., Jolley V.D., Webb B.L., and Nicholas B.A. 2010. Phosphorus and zinc interactions in chelator-buffered solution grown russet Burbank potato. Journal of Plant Nutrition, 33:587-601.
5- Barker A.V., and Pilbean D.J. 2007. Handbook of Plant Nutrition. CRC Press, Taylor and Francis Group, Boca Raton, USA.
6- Baybourdi A., and Malakouti M.J. 2001. Effects of different zinc and phosphorus levels on cadmium concentration of two potato cultivars in Sarab. Water and Soil Journal, 25(1):25-38. (in Farsi with English abstract)
7- Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species (a review). New Phytologist, 146:185-205.
8- Cakmak I., and Hoffland L. 2012. Zinc for the improvement of crop production and human health. Plant and Soil, 361:1-2.
9- Duffner A., Hoffland E., and Temminghoff E.J. M. 2012. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation. Plant and Soil, 361:165-175.
10- Eskandari A., Khazaie N.R., Nezami A., and Kafi M. 2011. Effect of irrigation regime on yield and some quality attributes of potato (Solanum tuberosum L.). Water and Soil Journal, 25(2):240- 247. (in Farsi with English abstract)
11- FAO. 2014. FAOSTAT. Food and Agriculture Organization of the United Nations. Available in: http://faostat.fao.org/statistics.
12- Fageria N.K., Morais O.P., and Santos A.B. 2010. Nitrogen use efficiency in upland rice genotypes. Journal of Plant Nutrition, 33:1696-1711.
13- Fleisher D.H., Wang Q., Timlin D.J., Chun J.A., and Reddy V.R. 2012. Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment. Crop Science, 52:1803-1815.
14- Gee G.W., and Bauder D. 1986. Particle size analysis. In: Dane J.H. and Topp G.C. (eds). Methods of Soil Analysis: Part4. Physical Methods. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA, pp. 255-292.
15- Gheibi M., and Malakouti M.J. 1997. Determination of Nutrients Critical Levels for Strategic Crops and Accurate Fertilizer Recommendation in Iran. Agricultural Education Publisher, Iran.
16- Jones J. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, LLC. USA.
17- Lambert R., Grant C., and Sauve S. 2007. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Science of the Total Environment, 378:293-305.
18- Loneragan J F., and Webb M J. 1993. Interaction between zinc and other nutrients affecting the growth of plants. Pp. 119-134. Robson, A.D. (ed.) Zinc in Soils and Plants. Kluwer Academic Pub., Dordrecht.
19- Maier N.A., McLaughlin M.J., Heap M., Butt M., and Smart M.K. 2002. Effect of current-season application of calcitic lime and phosphorus fertilization on soil pH, potato growth, yield, dry matter content, and cadmium concentration. Communications in Soil Science and Plant Analysis, 33:2145-2165.
20- Malakouti M.J., and Lotfollahi M.A. 2000. The Role of Zinc on the Improvement of the Quality and Yield of Agricultural Crops and the Enhancement of Peoples Health. Agricultural Education Publisher, Iran.
21- Mandal L.N., and Haldar M. 1980. Influence of phosphorus and zinc application on the availability of zinc, copper, iron, manganese and phosphorus in waterlogged rice soil. Soil Science, 130:251-257.
22- Mandal B., and Mandal L.N. 1990. Effect of phosphorus application on transformation of zinc fraction in soil and on the zinc nutrition of lowland rice. Plant and Soil, 121:115-123.
23- Marschner H. 1995. Mineral Nutrition of Higher Plants. (2nd Ed). Academic Press, USA.
24- McArthur D.A.J., and Knowles N.R. 1993. Influence of species of vesicular-arbuscular mycorrhizal fungi and phosphorus nutrition on growth, development, and mineral nutrition of potato (Solanum tuberosum L.). Plant Physiology, 102:771-782.
25- Mostashari M. 2001. Effects of zinc and iron with different phosphorus rate on corn yield in Qazvin province. 7th Iranian Soil Sci. Cong., Shahrekord, Iran. Pp. 527-528.
26- Motalebifard R., Najafi N., Oustan S., Nyshabouri M. R., and Valizadeh M. 2013. The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162:31-38.
27- Moustaui D., Verloo M., and Pauvels J. 1991. Contribution of the study of Phosphorus- zinc interaction. Pedologie, 41(3):251- 261.
28- Navarre D.A., Goyer A., and Shakya R. 2009. Nutritional value of potatoes: vitamin, phytonutrient and mineral content. In: Singh J. and Kaur L. (eds). Advances in Potato Chemistry and Technology. Elsevier Inc., pp. 395-424.
29- Nelson L.A., and Anderson R.L. 1977. Partitioning of soil test-crop response probability. In: Peck T.R. (ed). Soil Testing: Correlation and Interpreting the Analytical Results. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA, Pp. 19-38.
30- Oroji H., and Golchin A. 2010. The effects of zinc, manganese and copper on potato yield and leaf and tuber concentrations of phosphorus and iron. JWSS - Isfahan University of Technology, 16(61):221-230. (in Farsi with English abstract)
31- Rattan R.K., and Deb D.L. 1981. Self-diffusion of zinc and iron in soils as affected by pH, CaCO3, moisture, carrier and phosphorus levels. Plant Soil, 63:377-393.
32- Ryan J.R., Stefan G., and Rashid A. 2001. Soil and Plant Analysis Laboratory Manual (2nd ed). ICARDA. Aleppo, Syria, 172 P.
33- Sharma C.P., Mehrotra S.C., Sharma P.N., and Bisht S.S. 1984. Water stress induced by zinc deficiency in cabbage. Current Science, 53:44-45.
34- Shivay Y.S., Kumar D., and Prasad R. 2008. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutrient Cycling in Agroecosystems, 81:229-243.
35- Shojaie K., and Javaheri S. 2004. Effect of time, rate and method of zinc sulphate application on yield and zinc uptake of two potato cultivars. Agr. Res. Iran 12(1): 191-198. (in Farsi with English abstract)
36- Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabaei M.A., Johnson C.T., and Sumner M.E. 1996. Methods of soil analysis. Part 3, chemical methods. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA.
37- Taya J., Malik J., Pandita M., and Khurana S. 1994. Fertilizer management in potato based cropping system 1: Growth and yield of potato. Journal of Indian Potato Association, 21:84-88.
38- Tehrani M.M., Pasandideh M., and Davoodi M.H. 2011. Determination of micronutrients distribution and recommendation in Guilan, Mazandaran, Kermanshah, East Azarbaijan, Hamedan and Esfahan irrigated land. Final report no. 1618, Soil and water Research Institute, kararj, Iran.
39- Trehan S.P., and Sharma R. C. 2003. Root-shoot ratio as indicator of zinc uptake efficiency of different potato cultivars. Communication in Soil Science and Plant Analysis, 34(7&8):919-932.
40- Westerman L.Z. 1990. Soil Testing and Plant Analysis. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA.
41- Wishart J., George T.S., Brown L.K., Ramsay G., Bradshaw J.E., White P.J., and Gregory P.J. 2013. Measuring variation in potato roots in both field and glasshouse: the search for useful yield predictors and a simple screen for root traits. Plant and Soil, 368:231-249.
42- Wittenmayer L., and Merbach W. 2005. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. Journal of Plant Nutrition and Soil Science, 168:531-540.
43- Zahedifar M., Karimian N., and Yasrebi J. 2010. Zinc desorption of calcareous soils as influenced by applied zinc and phosphorus and described by eight kinetic models. Communication in Soil Science and Plant Analysis, 41(7):897-907.