تهیه داده‌های تلفیقی بارش ماهانه برای حوضه‌های آبریز جنوب غرب کشور با بکارگیری داده‌های شبکه‌ای APHRODITE و مشاهداتی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 پژوهشکده اقلیم شناسی، سازمان هواشناسی کشور، مشهد

2 دانشگاه کالیفرنیا-اروین

3 سازمان هواشناسی کشور، تهران

چکیده

حوضه های آبریز جنوب غرب کشور شامل کرخه، کارون بزرگ، جراحی و زهره سهم چشمگیری در تامین منابع آبی مورد نیاز بخش های کشاورزی، شرب، صنعت و نیروگاههای برقابی منطقه و برخی استان های واقع در شرق زاگرس دارند. وجود داده های پایه ماهانه بارش با تراکم مناسب از نیازهای اساسی برای مدیریت منابع آبی منطقه از قبیل تصمیم گیری در مورد زمان مناسب آبگیری و تخلیه سدها، واسنجی و پس پردازش برونداد مدل های پیش بینی ماهانه بارش و پیش آگاهی خشکسالی می باشد. بررسی تعدادایستگاههای سنجش بارش تحت پوشش وزارت نیرو و سازمان هواشناسی کشور نشان می دهد که حدود 34 درصد از منطقه فاقد تراکم مناسب از ایستگاههای اندازه گیری بارش می باشد. برای پرکردن خلاء های آماری از داده های بازکاوی افرودیت که توسط سازمان هواشناسی ژاپن و با همکاری اتحادیه هواشناسی آسیا در تامین داده های بارش کشورهای آسیایی تهیه شده است، استفاده گردید. داده های شبکه ای افرودیت در دو تفکیک مکانی 5/0×5/0 درجه و 25/0×25/0 درجه در دسترس هستند. بدین منظور در ابتدا صحت داده های بارش افرودیت با داده های دیدبانی بررسی گردید. پس از حصول اطمینان از کارایی داده های افرودیت و اعمال تصحیحات مربوطه، داده ها مذکور جایگزین داده های دیدبانی مخدوش یا شبکه های فاقد داده شدند. به دلیل عدم به روزرسانی داده های APHRODITE بر روی غرب آسیا، دوره مطالعاتی محدود به دوره 2007-1987 میلادی گردید. بررسی ها نشان داد، داده های تلفیقی دیدبانی-افرودیت بدست آمده به خوبی قادر به نمایش الگوهای بارش حوضه های آبریز جنوب غرب کشور به ویژه در ماههای سرد و پر بارش می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Providing Monthly Composite APHRODITE-Observed Precipitation Data over Iran’s Southwest Watersheds

نویسندگان [English]

  • iman babaeian 1
  • Maryam Karimian 1
  • Hamed Ashouri 2
  • Rahele Modirian 1
  • Leili Khazanedari 1
  • Sharare Malbusi 1
  • Mansure Kuhi 1
  • Azade Mohamadian 1
  • Ebrahim Fattahi 3
1 Climatological Research Institute, Mashhad, Iran
2 University of California-Irvine
3 Atmospheric Science and Meteorological Research Center, Tehran
چکیده [English]

Introduction: Southeast watersheds of Iran including Great Karoon, Karkheh, Jarrahi and Zohreh have the most significant contribution in the water supply of the agriculture, industry, drinking water and hydroelectric power plants over Iran. 25 percent of the country’s electricity is produced from hydroelectric power plants located in this region. The existence of a monthly relatively high resolution gridded precipitation dataset is of the most important needs of water resources management for such as deciding on the suitable time of dewatering and discharge of dams, calibration of dynamical monthly forecasting models and drought early warning. Even considering all observation stations governed by Meteorological Administration and Ministry of Power, the density of stations is not so enough to use them for calibration of hydro-climate model outputs. To overcome this deficiency, one way to fill the gap is using bias corrected global gridded precipitation dataset such as APHRODITE, CMORPH, PRESIANN and other newly generated data.
Material and Methods: Watershed of Karkheh, great Karoon, Jarrahi and Zohreh are the area of study which covers southwest provinces of Khuzestan, Kermanshah, Ilam, Chaharmohal-Bakhtiari, Kohkiluyeh and Buyerahmad, Isfahan, Hamadan, Fars and Lorestan, which is shown in figure 2. There are 135 observation station in the area of study which governs by Iran Meteorological Organization and Ministry of Power. Area of study covers by 75 grids of 0.5×0.5 degree latitude and longitude. For each grid there is an APHRODITE precipitation data. In the 34% of grids, there is no observation station. The main goal of this study is to attribute a reliable monthly precipitation data to all grids without any observation station. Period of APHRODITE data set is 1987-2007, which is same to observation period. Firstly regional bias of APHRODITE data set has been computed by comparing observed precipitation with APHRODITE one. Then bias corrected APHRODITE precipitation (Composite APHRODITE Observation dataset) has been placed in non-observation grids. Efficiency of composite precipitation data has been determined by statistical parameters of bias, correlation and Nash-Sutcliff indices.
Results and Discussion: In this research the results have been evaluated at monthly and seasonal time scales. In the case of seasonal time scale, we found that the minimum APHRODITE’s bias of 1.2 mm has been occurring in summer, while the maximum bias has been occurring in winter by 40.9mm. It means that the bias is high in the rainy season. Seasonal correlations were statistically acceptable in 0.05 significant levels, showing same seasonal fluctuations in APHRODITE and rain gage data. To provide seasonal composite APHRODITE-Observed precipitation gridded data set, mean seasonal bias of APHRODITE has been removed, while preserving seasonal fluctuation. The highest spatial correlation of 0.8 was detected in autumn, while it was about 0.7 for spring and winter. The minimum seasonal correlation was in summer by 0.5. There were also a good agreement between area averaged observation and APHRODITE data, when considering statistical indices of bias, Nash-Sutcliff and relative percentage errors. Results show the cumulative distribution function of APRODITE data is behind of the observed cumulative distribution function data, meaning that APHRODITE reaches its maximum earlier than observation data. This implies that APHRODITE cannot capture well the extreme monthly precipitation. Monthly correlations are approximately greater than 0.9, but the only exception is September with a correlation coefficient of 0.52. All correlations are significant in 0.05 levels. The highest spatial correlation was occurred in Novembers. Monthly Nash-Sutcliff was 0.96 in monthly time series. The categorical percentage score was 94.1%. These results strongly confirm that APHRODITE precipitation data is a good option for replacement in grid cells without observations. The number of observation stations per cell is varied from 1 to 7. We found that the maximum monthly correlations occur in grid cells of 0.5×0.5 degree latitude and longitude which having at least 3 observation stations. The three-station bias has been applied to APHRODITE data, then bias-removed data has been replaced with grid cells without observations. Spatial patterns of new composite APHRODITE-observation data set has good agreement with observation in the areas having intense observation stations. They also can capture well the spatial precipitation distribution of rainy areas located in the center of basin and low rainfall areas located in the southwest of the region. The results of this research can be used in calibration of dynamical seasonal forecasting outputs, drought early warning and rain-runoff simulation.

کلیدواژه‌ها [English]

  • APHRODITE
  • Calibration
  • Great Karoon Basin
  • Khuzestan
  • Precipitation
1. Adam J.C., Lettenmaier D.P. 2003. Adjustment of Global Gridded Precipitation for Systematic Bias, Geophysical Research, 108(D9): 42-57.
2. Adler R., Coauthors. 2003. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4:1147–1167.
3. Akhavan S., Abedi J., Mousavi F., Abaspoor K., Afyoni M., Eslamian S. 2010. Estimation of blue and green water using SWAT in Hamedan Sub-Basin, Science and Technology of Agriculture and Natural Resources, Water and Soil Science, No. 53.
4. Ashouri H., Hsu K. L., Sorooshian S., Braithwaite D. K., Knapp K. R., Cecil L. D., Nelson B. R., Prat O. 2015. PERSIANN-CDR Daily precipitation Climate Data Record from Multi-satellite Observations for Hydrological and Climate Studies, Bulletin of the American Meteorological Society, 96(1):69-83.
5. Babaeian I., Karimian M., Modirian R. 2013. Statistical post processing MRI-CGCM3 output for seasonal precipitation forecast over Khorasan-Razavi province, Iranian Journal of Geophysics, 7(3): 119-133.
6. Burroughs W. 2003. Climate into the 21st Century, Cambridge University Press, 240 pp.
7. Ghazanfari moghadam M. S., Alizadeh A., Musavi baygi S. M., Farid hoseini A., Bannayan aval M. 2011. Comparison the PERSIANN Model with the Interpolation Method to Estimate Daily Precipitation (A Case Study: North Khorasan), Journal of Water and Soil, 25(1): 207-215.
8. Gruber A., Levizzani V. 2008. Assessment of global precipitation products. Technical Report-WRCP-128, WMO/TD-No. 1430, 55 pp. Available online at: www.gewex.org/reports/2008AssessmentGlobal PrecipReport.pdf.]
9. Hou, A., Jackson G. S., Kummerow C., Shepherd J. M. 2008. Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction,S. Michaelides, Ed., Springer: 131–170.
10. Hou A., Jackson G. S., Kummerow C., Shepherd J. M. 2014. The Global Precipitation Measurement Mission. Bulletin of American Meteorological Society, 95:701–722.
11. Huffman G. J., Coauthors. 1997. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset, Bulletin of American Meteorological Society, 78: 5–20.
12. Joyce R. J., Janowiak J. E., Arkin P. A., and Xie P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5:487–503.
13. Kamiguchi K., Arakawa O., Kitoh A., Yatagai A., Hamada A., Yasutomi N. 2010. Development of APHRO_JP, the First Japanese High-resolution Daily Precipitation Product for More than 100 Years, Hydrological Research Letters, 4: 60–64.
14. Kummerow C., Barnes W., Kozu T., Shiue J., Simpson J. 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit, Journal of Applied Meteorology, 39:1965–1982.
15. Kavyani M. R., Alijani B. 1995. The Foundations of Climatology. The Organization for Researching and Composing University Textbooks in the Humanities (SAMT).,Tehran.
16. Lin Y., Mitchell K. E. 2005. The NCEP stage II/IV hourly precipitation analyses. Development and applications. Extended Abstracts, 19th Conference on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. Available online at http://ams.confex.com/ams /Annual2005/techprogram/paper_83847.htm.
17. Maddox R. A., Zhang J., Gourley J. J., Howard K. W. 2002. Weather radar coverage over the contiguous United States, Journal of Weather and Forecasting, 17:927–934.
18. Mansour Far K. 1995. Statistical Methods. University of Tehran Press, Tehran.
19. Nasrabadi E., Masoodian A., Asakereh H. 2013. Comparison of Gridded Precipitation Time Series Data in APHRODITE and Asfazari Database within Iran’s Territory, Journal of Atmospheric and Climate Sciences, 3: 235-248.
20. Rasu A.G.G., Mahmood T., Zaman Q., Cheema S.B. 2012. Validation of APHRODITE Precipitation Data for Humid and Sub Humid Regions of Pakistan, Pakistan Journal of Meteorology, 19(17): 45-58.
21. Takashima H., Yatagai A., Kawamoto H., Arakawa O., Kamiguchi K. 2008. Hydrological Balance over Northern Eurasia from Gauge-based High-resolution Daily Precipitation Data, Hydrochange 2008 in Kyoto, 10,03, Kyoto.
22. Utsumi N., Kanae S., Kim H., Seto S., Oki T., Nitta T., Hirabayashi Y. 2008. Importance of Wind-induced Under catch Adjustment in a Gauge-based Analysis of Daily Precipitation over Japan, Hydrological Research Letters, 2:47–51.
23. Westrick, K. J., Mass C. F., Colle B. A. 1999. The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States, American Meteorological Society, 80:2289–2298.
24. Xie, P., Janowiak J. E., Arkin P. A., Adler R., Gruber A., Ferraro R., Huffman G. J., Curtis S. 2003. GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates, Journal of Climate, 16:2197–2214.
25. Yasutomi N., Hamada A., Yatagai A. 2011. Development of a Long-term Daily Gridded Temperature Dataset and its Application to Rain/Snow Discrimination of Daily Precipitation, Global Environmental Research.
26. Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., Kitoh A. 2012. Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, American Meteorological Society , Vol. 93, No. 9, pp. 1401-1415.