تحلیل حساسیت مدل پنمن- مونتیث- فائو در برآورد تبخیرتعرق مرجع روزانه و پهنه‌بندی ضرایب حساسیت آن در گستره ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه باهنر کرمان

2 مهندسی منابع آب و استادیاران بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنرکرمان

چکیده

تبخیرتعرق (ET) تابع متغیرهای مختلف اقلیمی و ویژگی های توپوگرافی هر منطقه است. اولویت بندی و تعیین شدت تأثیر هر یک از این پارامترها بر روی تبخیرتعرق کمک شایانی به مدیریت منابع آب منطقه می نماید. در این مطالعه، تحلیل حساسیت مدل استاندارد پنمن- مونتیث- فائو در برآورد تبخیرتعرق مرجع (ETo) براساس متغیرهای اقلیمی میانگین دمای هوا (Tmean)، تابش خالص(Rn) ، مقاومت آئرودینامیک (ra) و کمبود اشباع (VPD) انجام پذیرفته است. ایستگاه های هواشناسی منتخب شامل 31 ایستگاه سینوپتیک در گستره ایران با دوره زمانی مشترک 19 ساله (2014-1996) می باشد. طبقه بندی اقلیمی ایستگاه ها نشان داد که از این تعداد ایستگاه مورد بررسی، 3 ایستگاه در اقلیم فراخشک، 10 ایستگاه در اقلیم خشک، 13 ایستگاه در اقلیم نیمه خشک، 2 ایستگاه در اقلیم مدیترانه ای، 2 ایستگاه در اقلیم مرطوب و 1 ایستگاه در اقلیم بسیار مرطوب (الف) قرار دارند. ضرایب حساسیت برای هر یک از متغیرها در مقیاس زمانی روزانه با استفاده از روش مشتقات جزئی و تحلیل حساسیت محلی محاسبه گردید. سپس پهنه بندی ضرایب حساسیت با استفاده از روش عکس مجذور فاصله (IDW) تهیه شد. نتایج نشان داد که ETo محاسبه شده در تمامی اقالیم، به میانگین ضریب حساسیت تابش خالص (0.999) (SRn) بسیار حساس بوده در حالی که به میانگین دما در اقلیم های فراخشک، نیمه خشک، خشک و مدیترانه ای طی ماه های ژوئیه، اوت، سپتامبر و اکتبر حساس است. کمترین مقدار ضریب حساسیت مقاومت آئرودینامیک (Sra) در روز جولیوسی 331 منطبق بر26 و 27ام نوامبر (آذر ماه) و بیشترین آن در روز 340 منطبق بر 5 و 6ام دسامبر (دی ماه) بوده است. این ضریب حساسیت در طی ماه های زمستان بزرگتر و طی ماه های تابستان کوچکتر بود، در حالی که کمترین و بیشترین مقدار ضریب حساسیت کمبود اشباع (SVPD) در ماه دسامبر به ترتیب با مقادیر 0.008- و 0.032 می باشد. ضریب حساسیت Tmean در کلیه ایستگاه های مطالعاتی طی ماه های تابستان بزرگتر و طی ماه های زمستان کوچکتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity Analysis of FAO Penman-Monteith Model in Daily Reference Evapotranspiration Estimation and Zoning Sensitivity Coefficients across Iran

نویسندگان [English]

  • F. Khadempour 1
  • B. Bakhtiari 1
  • S. Golestani 2
1 shahid bahonar university of kerman
2 Water Engineering Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Introduction: In drainage and irrigation network capacity design and determination, reference evapotranspiration (ETo) plays significant role. Methods applied for estimated reference evapotranspiration classified in two direct and computational methods. Amongst computational methods it might point to Penman-Monteith method. This method requires radiation, temperature, humidity and wind speed data with high reliability rate in vast ranges of climates and areas represent precise outcome from reference plant Evapotranspiration.
Materials and Methods: Study stations in De Martonne classification system are divided into 6 climates such as Hyper-arid, Arid, Semi-arid, Mediterranean, Humid and Very humid (a) climates. Study stations statistical span during 19 years (1996-2015) were selected and temperature, relative humidity, sunshine hours, and wind speed in 2 meter height daily data were used. Figure 1 showed studied stations position all over the country. In this study, in order to obtain daily ETo, Penman-Monteith standard method represented by FAO-56 was used. In local sensitivity analysis, factors local influences on model output were shown. Such an analysis usually carried out through output functions minor deviants computation due to input variables. In this analysis, usually it was used one-factor- at-a- time method (OAT), so that, one variable factor and other input factors kept constant.

Figure 1. The geographical location of weather stations

The FAO-56 PM model for estimating ETo is as follows (3).
(1)
where ETo is reference crop evapotranspiration (mm day−1), Δ is the slope of vapor pressure versus temperature curve at temperature Tmean (kPa°C−1), γ is the psychometric constant (kPa °C−1), u2 is the wind speed at a 2 m height (m s−1), Rn is the net radiation at crop surface (MJ m−2 d−1), G is the soil heat flux density (MJ m−2 d−1), T is the mean daily air temperature at 2 m height (°C), and (es-ea) is the saturation vapor pressure deficit (kPa).
Results and Discussion: Weather parameters in stations showed that mean temperature sensitivity coefficient ( ) in all study stations varied between 0.21 to 0.78 so that the maximum temperature sensitivity coefficient related to Bushehr station in arid climate (in April, May, June, July, October and November) and minimum temperature sensitivity coefficient related to Shahrekordstation in semi-arid climate (in January, March, April and November). Maximum and minimum net radiation sensitivity coefficient value ( ) related to Rasht and Zahedanstations respectively. Also, maximum and minimum wind speed sensitivity coefficient value ( ) related to Zahedan and Ardebilstations are 0.54 and 0.07 respectively. Yazd station in Hyper-arid climate showed minimum relative humidity sensitivity coefficient value ( ) about 0.20 and Rasht station in very-humid (a) showed the maximum values 0.45. So the northern coastal areas are more sensitive to and SRH. The highest value is in northern coastal areas and lowest in southern coastal and southwest areas of the country. Some other studies showed that in many climates evapotranspiration was more sensitive to Rn (6, 14 and 17).In current study, also, showed the highest sensitivity in Very-humid climate (a) includes Rasht station in February, March, April, October and November. For example, = 0.82 means that 100% increase in Rn parameter result in 82% increase in ETo.
Conclusion: Sensitivity analysis experiment on FAO Penman-Monteith standard method is one of the most efficient methods to understand various climate parameters influence on reference evapotranspiration (ETo). In this study, results showed that computed ETo in all climates showed highest sensitivity to Rn and temperature respectively. Temperature sensitivity coefficient showed the highest value at April. May, June, July, October and November and Rn showed its highest value at March, April, October and November. While, minimum in all of months but May and July and maximum value showed in January, July, August and September by 0.07 and 0.54 respectively. So, in most months of the spring and the fall was larger and smaller during the winter months. Sensitivity coefficient related to mean temperature is higher during summer season and lower during winter season. Results of this study may be useful for assessing the response of the standardized FAO Penman-Monteith model in different climatic conditions. The results can also be used to predict changes in ETo values with respect to climatic variable changes obtained from climate change models.

کلیدواژه‌ها [English]

  • FAO Penman- Monteith
  • Reference evapotranspiration
  • sensitivity analysis
  • ET
1. Alizadeh A., Kamali GH.A., Khanjani M.J and Rahnavard, M.R. 2004. Evaluation of evapotranspiration in arid regions of Iran. Journal of Geographical Research, 2(73): 97-105. (in Persian)
2. Alizadeh A. 2006. Designing of Irrigation Systems. First Volume, Publishers of Astan Quds Razavi, p. 460.
3. Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper (FAO), 56: 1- 300.
4. Bakhtiari B., and Liaghat A.M. 2011. Seasonal sensitivity analysis for climatic variables of ASCE- Penman- Monteith in a Semi-arid climate. Journal of Agricultural Science and Technology, 13: 1135-1145.
5. Beven K. 1979. A Sensitivity analysis of the Penman- Monteith actual evapotranspiration estimates. Journal of Hydrology, 44: 169-190.
6. Coleman G., and DeCoursey D.G. 1976. Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models. Water Resour Research, 12: 873-879.
7. Estevez J., Gavilan P., and Berengena J. 2009. Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern spain. Published online in Wiley InterScience, Hydrology Process, 23:3342-3353.
8. Gong L.B., Xu C.Y, Chen D.L., Halldin S., and Chen Y.D. 2006. Sensitivity of the Penman- Monteith reference evapotranspiration to key climatic variables in the changjiang (Yangtze River) basin. Journal of Hydrology, 329: 620-629.
9. Hargreaves G.H. 1994. Defining and using reference evapotranspiration. Irrigation and Drainage Engineering, ASCE, 120(6): 1132- 1139.
10. Hupet F., and Vanclooster M. 2001. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. Journal of Hydrology, 243: 192-204.
11. Liang L.Q., Li L.J., Zhang L., Li, J.Y., and Li B. 2008. Sensitivity of the Penman- Monteith reference crop evapotranspiration in Tao, er River basin of Northeastern China. Chinese Geographical Science, 18: 340-347.
12. Liu Q., Yang Z., Cui., B., and Sun T. 2010. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the YellowRiver Basin. Hydrological Processes, 24: 2171- 2181.
13. Mamassis N,. Panagoulia D,. Novkovic A. 2014. Sensitivity analysis of Penman evaporation method. Global NEST, 16(4): 628- 639.
14. McCuen R.H. 1974. A sensitivity and error analysis of procedures used for estimating evaporation. Water Resource Bulletin, 10: 486-498.
15. Rana G. and Katerji N. 1998. A Measurement based sensitivity analysis of the Penman- Monteith actual evapotranspiration model for crops of different heights and in contrasting water status. Theoretical and Applied Climatology. 60: 141-149.
16. Saltelli A., and Bolado R. 2000. An Alternative way to compute fourier amplitude sensitivity test (FAST), Computational Statistics and Data Analysis, 26(4): 445-460.
17. Saxton K.E. 1975. Sensitivity analysis of the combination evapotranspiration equation. Agricultural Meteorology, 15: 343-353.
18. Sharifi A.R., and Dinpazhoh Y. 2014. Sensitivity analysis reference crop evapotranspiration Penman-Monteith model to climatic variables in Iran. Journal of Water Resources Management, 28: 5465-5476. (in Persian)
19. Zhao J., Xu Z.x., Zuo D.p., and Wang X.m. 2015. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, china. Water Sciences and Engineering, p. 1-8.