اثرسکوسترین آهن بر رشد گیاه سویا و توزیع شکل‌های شیمیایی آهن در خاک‌های استان فارس

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مرکز تحقیقات کشاورزی فارس

2 گروه خاک و آب سازمان جهاد کشاورزی زنجان، ایران

چکیده

از بین عناصر کم مصرف مورد نیاز گیاهان، آهن، محدودیت‌های زیادی را برای محصولات کشاورزی استان فارس به خود اختصاص داده است.در یک آزمایش گلخانه‌ای،اثر کود سکوسترینآهن 138 بر رشد و ترکیب شیمیایی رقم ویلیامز (Glycine max L.)سویا به صورت فاکتوریل و در قالب طرح کاملاً تصادفی و با سه تکرار، مورد مطالعه قرار گرفت. تیمارها،شامل 3سطح کودی از منبع سکوسترین آهن (شاهد، 5 و10میلی‌گرم برکیلوگرم خاک) و10 نمونه خاک‌می‌باشند. کاربرد آهن، منجر به افزایش معنی‌دار وزن خشک، غلظت و جذب آهن و کاهش معنی‌دار غلظت و جذب روی، مس و منگنز در گیاه سویا گردید.سکوسترین آهن، اثر معنی‌داری بر شکل‌های قابل استخراج باعصاره‌گیرهای دی‌تی‌پی‌ا، ای‌دی‌تی‌ا، شکل‌های آلی و تبادلی آهن نشان داد. شکلآلی اهن، با مقدار آهن قابل استفاده گیاهی (عصاره‌گیری شده با دی‌تی‌پی‌ا)، همبستگی مثبت معنی‌دار داشت. همچنین، بسیاری از ویژگی‌های فیزیکی و شیمیایی خاک‌های آهکی مورد مطالعه، با برخی از شکل‌های شیمیایی و مقدار جذب آهن گیاهی، همبستگی معنی‌داری نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Fe-EDDHA on Soybean and Distribution of Chemical Forms of Iron in Soils of Fars Province

نویسندگان [English]

  • leila tabande 1
  • M. R.Bakhshi 2
1 Master of Science,Soil and Water Research Department, Fars Agricultural and Natural Resources Research Center, AREEO, Shiraz, Iran
2 Master of Science,Department of Soil & Water, Jihad Agriculture Organization, Zanjan, Iran
چکیده [English]

Introduction
Among essential plant microelements, iron (Fe) exert the highest restriction of crop production in Fars Province. Trace elements in the soil is composed of forms into 5 groups. These are the water-soluble and variable, adsorbed, chelate creating with complex compounds, secondary clay minerals, forms insoluble metal oxide minerals, and primary minerals. Water-soluble, changeable, adsorbed or form in chelates to be present as balance in the soil is noted and to be important for plants in nutrition.
Materials and Methods
In a greenhouse experiment was done with Soybean planting, the effects of Fe chelate (FeEDDHA) fertilizer levels on William cultivar of soybean (Glycine max L.) growth and chemical composition were studied by using a completely randomized design with 3 replications. Treatments were consisted of 10 soil samples and 3 levels of Fe applications (control, 5 and 10 mg.kg-1 as Fe EDDHA). Beside some physical and chemical soil properties and Extractable iron content with DTPA and EDTA were determined. By sequential extraction methods of Singh & Sposito ( 1982), chemical forms of Iron, exchangeable iron (Exch-Fe), organic bounded iron (OM-Fe), amorph iron oxides bounded iron (AFeOX-Fe), crystal iron oxides bounded iron (CFeOX-Fe) contents of soils were determined. Then, Concentration and uptake of Fe, Mn, Cu and Zn in plant were calculated.
Results and Discussion
carbonate, organically, amorphous oxide, crystalline iron oxide bounded and residual forms of iron were 0.0053, 0.0016, 0.44, 21.1 and 78.6% of the total iron as average, respectively. Therefore, content of carbonate, organically bound iron of soil, represented only a small fraction would not be considered as important as the total iron. In other words, crystalline iron oxide bound iron and residue iron forms constitued an important part of total iron.
Considering the average iron content of the soil related to chemical forms of iron was arrenged such as:
Res-Fe>CFeOX-Fe>AFeOX-Fe>Car-Fe> OM-Fe > Exch.-Fe
Applications of Fe had significant effect on dry matter, concentration, and uptake of Fe, Zn, Cu and Mn, extractable forms via extracting DTPA, EDTA, organic and exchangeable forms in soybean compared to control. Among chemical forms of iron, organic form with the amount of available iron plant (extraction by DTPA) had significant positive correlation. Also, many of the physical and chemical properties of calcareous soils studied, were significantly correlated with some chemical forms and amount of iron uptake by plant. DTPA extractable iron had negative correlation with pH ( R2= 0.514*) and EDTA extractable iron had positive correlation with organic matter (R2= 0.428*).
Conclusions
Application of Fe EDDHA, was leaded to significant increase organic and plant available (DTPA) forms of iron and due to significant regression equation (r=0.435*) between two chemical forms of iron (organic and DTPA extracted), it can be inferred that, the bulk of available iron plant was in form of organically bound. One reason for the positive reaction to the use of Fe EDDHA, subjected to a significant increase absorbable forms of iron in the studied soils.
Keywords: Chemical and Physical properties of soil, DTPA, EDTA, Iron, Sequential extraction

کلیدواژه‌ها [English]

  • Chemical and Physical properties of soil
  • DTPA
  • EDTA
  • Iron
  • Sequential Extraction
Abbaspour A., Kalbasi M. and Shariatmadari H. 2004. Effect of steel converter sludge as iron fertilizer and amendment in some calcareous soil, Journal of Plant Nutrition, 27(2): 377-394.
2- Adhikari M. and Si S.K. 1991. Studies on different forms of iron and aluminum and their release in relation to acidity of some acid soils, Journal of Indian Societyand Soil Science, 39: 252- 255.
3- Alison L.E. and Moodie C.D. 1965. Method of soil analysis. Part II, Monograph No. 9. American Society of Agronomy. Madison, WI.
4- Bouyoucos C.J. 1962. Hydrometer method improved for making particle – size analysis of soils, Agronomy Journal, 54:464-465.
5- Bray R.H. 1945. Soil-plant relationships: II. Blanced fertilizer use through soil tests for K and P. Soil Science, 60:463-473.
6- Brown A.L., Quick J. and Eddings J.L. 1971. A comparison of analytical methods for soil zinc, Soil Science Society of American, 35: 105- 107.
7- Cakmack I. and Braun H.J. 2001. Genotypic variation for Zinc efficiency. In: Reynolds MP, Ortiz- Monaterio JI, McNabA(ed.) Application of physiology in Wheat breeding. Mexico, pp.175-188.
8- Chackerolhoseini M.R. 2001. Effect of P and Fe on yield and concentration of corn and soybean. Master's thesis, Department of Soil Science, College of Agriculture, Shiraz University. (in Persian with English abstract)
9- Chaney R.L., Hamze M.H. and Bell P.F. 1992. Screening chickpea for iron chlorosisresistantance using bicarbonate in nutrient solution to simulate calcareous soils, Journal of Plant Nutrition, 15: 2045- 2062.
10- Chapman H.D. 1965. Cation exchange capactiy.P.811– 903. In: C.A. Black. et al(ed). Methods of soil analysis. Part II. Monograph No.9, American Society of Agronomy. Madison, WI.
11- Chen L, Warren Streeter A.W.J.G. and Horitionk H.A.J.1998. Fe chelates form compost microorganism improve Fe nutrition of soybean and oat, Plant and Soil, 200: 139- 147.
12- Chen Y., Shi J., Tin G., Zheng S. and Lin Q. 2004. Fe deficiency induces Cu uptake and accumulation in commeliacommunis, Plant Science, 166:1371-1377.
13- Dolui A.K. and Mustafi S.C., 1997. Forms of extractable iron in relation to soil characteristics of some alfisols. Journal of IndianSocietyand Soil Science, 45, 192- 194.
14 -Emame A. 1998. Methods of plant chemical analysis, Soil & Water Research Institute,Karaj.(in Persian)
15- Ghasemiphasaee R. 2002. Response of soybean genotypes to iron. Master's thesis, Department of Soil Science, College of Agriculture, Shiraz University. (in Persian with English abstract)
16- Han F.X. and Banin A. 1995. Selective sequential dissolution techniques for trace metals in arid-zone soils: The carbonatedissolutionstep,Communication and Soil Science and Plant Analysis, 26, 553-576.
17- Koleli N., Eker S. and Cakmak I. 2004. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc- deficient soil, Environmental Pollution, 131:453-459.
18- Kumar Das D. 1997. Intreductory soil science. KalyanPublishers,India.
19- Lindsay W.L., and Norvell W.A. 1978. Develepment of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Society of American Journal, 42: 421- 428.
20- Lucena J.J. 2000. Effects of bicarbonate, nitrate and other environmental factors on iron chlorosis,Areview, Journal of Plant Nutrition, 23:1591-1606.
21- Mahmoudi H., Ksouri R., Gharsalli M. and Lachaal M. 2005. Differences in responses to iron deficiency between two legums: Lentil (Lens culinaris) and chickpea(Cicerarietinum), Journal of Plant Physiology, 162(11):1237-1245.
22- Malakouti M.J., Karimian N.A. and Keshavarz P. 2006. Diagnosis and recommendation integrated system for balanced fertilization, Tarbiatmodarres university press.
23-Martens D.G., and Westerman D.T. 1991.Fertilizer application for correcting micronutrient deficiency.PP.549-592.In:Mortvedt, J.J., F.R. Cox, L.M. Shuman and R.M. Welch (Eds.), Micronutrients in Agriculture, SSSA,Madison, WI
24- Naganuma K., Okazaki M., Yonebayshi K. and AbuBaker Z. 1993. Surface charge and adsorption characteristics of copper and zinc on tropical soils, Soil Science and Plant Nutrition, 39: 455-462.
25- Neaman A., Reyes L., Trolard F., Bourrie G. andSauve S. 2009. Copper mobility in contaminated soils of the puchancavi valley, central Chile. Geoderma, 150: 359- 366.
26-Nodehsharify GH .R.,Dordipour E., BaraniMotlagh M. and Olamaee M. 2016. Distribution of soil iron chemical forms in some Golestanprovince soils, Applied Soil Research, 4(1):28-38.
27- Randhava H.S. and Singh S.P. 1997. Iron fractions in allivium- derived soils of Punjab, Journal of Indian Society and Soil Science, 45:825- 827.
28- Reyhanitabar A., Karimian N.A., Ardalan M., Savaghebi G.H.R. and Ghanadha M.R. 2006. Zinc Fractions of Selected Calcareous Soils of Tehran Province and Their Relationships with Soil Characteristics, Journal of Science and Technology of Agriculture and Natural Resources, 3: 125-136.
29- Roomizadeh S. and Karimian N. 1996. Manganese-iron relationship in soybean grown in calcareous soils, Journal of Plant Nutrition, 19: 379-406.
30-Shuman L.M. 1991. Chemical fractions of micronutrients in soils. In: Mortve, J.J., Cox F.R., Shuman L.M. and Awetch R.M. (Eds.). Micronutrients in Agriculture. SSSA, Madison,WI, pp. 113-144.
31- Shuman L.M. 1985. Frsctionation method for soil microelements, Journal of Soil Science, 140 (1): 11-22.
32- Singh J.P., Karwasra S.P.S. and Singh M. 1988. Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India, Soil Science, 146: 359-366.
33- Yerriswamy R.M., Vasuki N., Manjunathaiah H.M. and Satyanarayana T. 1995. Forms of iron and their distribution in some Vertisols of Karnataka, Journal of Indian Society and Soil Science, 43, 371- 374.
34- Yelvikar N.V., Seddiqui S.I.M., Malewar G.U. and Tajuddin G. 1996. Distribution of different forms of iron in Vertic soils and their relation with soil properties, Journal of Indian Society of Soil Science, 44: 781- 783.
35- Yousfi S., Wissal M., Mahmoudi H., Abdelly C. and Gharsalli M. 2007. Effect of salt on physiological responses of barley to iron deficiency, Plant Physiology Biochemistry, 45: 309-314.
36- Yousfi S., Rabhi M., Abdelly C. and Gharsalli M. 2009. Iron deficiency tolerance traits in wild(Hordeummaritimum) and cultivated barley (Hordeumvulgare),ComptesRendusBiologies, 332(6): 523-533.
37- Walkley A. and Black T.A. 1934. An examination of the Deligaref method for determining organic matter and a proposed modification of chromic acid titration method, Soil Science, 37:29-38.
38- Zhang M., Alva A.K., Li Y.C. and Calvert D.V. 1997. Fractionation of iron, aluminum, and phosphorous in selected sandy soils under citrus production. Soil Science Society and American Journal, 61:797-801.