تعیین حد بحرانی آهن برای لوبیا در استان مرکزی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 بخش تحقیقات خاک و آب، مرکز تحقیقـات و آمـوزش کشاورزی و منابع طبیعی اسـتان مرکـزی، سـازمان تحقیقـات، آمـوزش و تـرویج کشاورزی، اراک، ایران

2 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

کشت لوبیا در استان مرکزی از اهمیت زیادی برخوردار است. آهن از عناصر ضروری کم‌مصرف جهت رشد لوبیا می باشد. مبنای توصیه کود آزمون خاک هست. برای اینکه آزمون خاک بتواند مبنای توصیه کودی قرار گیرد بایستی در شرایط خاک‌های منطقه مورد مطالعه واسنجی گردد. در این راستا، شناسایی دقیق وضعیت خاک‌های لوبیاکاری استان مرکزی، مطالعه تعیین حدود بحرانی آهن انجام شد. تعداد ۱۸ نمونه خاک با دامنه وسیعی از غلظت آهن قابل‌استفاده انتخاب گردید. جهت بررسی تأثیر آهن بر گیاه لوبیا از دو سطح صفر و ده میلی‌گرم آهن از منبع سولفات آهن استفاده ‌شد. آزمایش به‌صورت فاکتوریل در سه تکرار در قالب طرح کاملاً تصادفی به اجرا درآمد. پس از اتمام مرحله رویشی، قسمت هوایی لوبیا برداشت و پارامترهای گیاهی شامل وزن ماده خشک لوبیا در هر گلدان، غلظت و جذب کل آهن در هر گلدان و عملکرد نسبی در هر خاک اندازه‌گیری شد. همچنین پاسخ لوبیا نسبت به مصرف آهن و ارتباط آن‌ها با ویژگی‌های فیزیکی و شیمیایی خاک‌ها مورد تجزیه ‌و تحلیل قرار گرفت. نتایج مقایسه میانگین نشان داد که تأثیر مصرف آهن بر پاسخ‌های گیاهی معنی‌دار بود. با استفاده از روش تصویری کیت – نلسون حد بحرانی آهن در خاک‌های مورد مطالعه ۵ میلی‌گرم بر کیلوگرم خاک به دست آمد. پارامترهای گیاهی با استفاده از ویژگی‌های خاک نظیر رس، شن، سیلت، کربن آلی و غلظت آهن قابل‌استفاده خاک به‌طور معنی‌داری قابل تخمین است.

کلیدواژه‌ها


عنوان مقاله [English]

Critical Level of Iron for Bean (Phaseolus vulgaris L.) Cultivation in Markazi Province

نویسندگان [English]

  • M. A. Khodshenas 1
  • J. Ghadbeiklou 1
  • M. Dadivar 2
1 Members of Scientific Board of Soil and Water Department, Markazi Agricultural and Resources Research and Training Center, AREEO, Arak, Iran
2 Khorasan razavi Agricultural and Natural Resources Research and Training Center
چکیده [English]

Introduction: Soil test has an important role in plant nutrition management to obtain the economical agriculture system. The nutrient concentration in soils that indicates the division between responsive and non-responsive conditions is termed the critical level. Before any fertilizer recommendation, we should be aware of the amount of nutrient critical levels in each region. Soil test results in an area, is not applicable for other agricultural areas. Therefore, these tests should be carried out in the soils of a desired area, so that the soil test could be the base for fertilizer recommendation. Iron is an essential micro element in the soil that mainly was found as insoluble (Ferric or Fe3+) form. Solubility of total inorganic iron decreases between pH 7.4 to 8.5. Bean (Phaseolus vulgaris L.) crop is one of the most widely grown throughout the Markazi province in Iran and has high nutritional value for human. Knowing that bean is a sensitive plant to iron, and because of lack of any information about iron critical level and regional calibration, this study was conducted in Markazi province.
Materials and Methods: Eighteen soil surface samples (0-30 cm) selected with a wide range of soil properties and iron concentration (extracted with DTPA method) from different zone of province and prepared for greenhouse cultivation. Soil physical and chemical properties such as: (texture, pH, calcium carbonate, organic matter, cation exchange capacity, and electrical conductivity) of soil were determined by routine laboratory methods. In this study, bean plant responses were investigated by application of two levels of iron (0 and 10 mg kg-1) in soil as iron sulfate in the greenhouse experiment. All of soil samples received nitrogen, potassium, phosphorus, manganese, copper and zinc as; (150, 100, 25, 5, 5, 5) mg kg-1 as solution in each pot respectively. The greenhouse study was conducted in a factorial experiment with three replications as complete randomized design. Six bean seeds were planted in pots. After the second week three plants of these six seeds were kept.
Soil moisture was maintained at field capacity. At the end of vegetative phase, the shoot bean and iron concentrations were determined in plant samples. At the end of the vegetation period, the shoot parts of plants cut, and plant responses including; (dry matter weight, Fe concentration, total Fe uptake and relative yield) (DMcontrol./DMFe fertilizer*100) were determined.

Results and Discussion: The results showed that available iron content in the soil varied from 1.5 to 20 mg kg-1 of soil with a mean value of 7.75 mg kg-1. The bean plant responded to Fe application and their relationships with physical and chemical properties of soils, which were investigated were effected too. Analysis of variance showed that the effects of soil and Fe fertilizer application were separately significant at 1% level for (weight dry matter, Fe concentration and Fe uptake). The effects of the (soil and fertilizer) interaction were significant at 1% level for the Fe concentration and Fe uptake. The mean comparison test of plant responses was significant as affected by Fe fertilizer consumption. By using Cate-Nelson graphic method, the critical level of iron in soils was five mg kg-1. Amounts of percent relative frequency indicated that eight percent of the soils were less than five mg kg-1 Fe, 63% of soils between 5 to 10 mg kg-1, 16% of soil between 10 to 15 mg kg-1 and 13% of soil above 15 mg kg-1 Fe. Plant Fe concentration in the control treatment (without Fe application) was 439.4 (mg kg-1), but at the Fe treatment (10mg kg-1) increased to (534.4mg kg-1).
The Fe uptake significantly increased from 1.54 to 2.16 mg Fe pot-1 with the application of 10 mg-Fe kg-1. The Fe uptake differences between treatments was due to increase of dry matter weight, and the plant Fe concentration, and this was due to the fertilizer application. Relative yield and dry matter weight showed positive and significant correlation with (clay, CEC and Fe available), but sand revealed negative correlation with the plant's response. The Fe uptake showed positive and significant correlation with Fe available but negative and significant correlation with the sand. The regression equation showed that Fe uptake to be related with CEC significantly.
Conclusion: By using Cate-Nelson graphic method, the critical level of iron in soils was five mg kg-1. The plant parameters were predictable significantly by soil properties such as (clay, sand, silt, soil organic carbon and Fe concentration).

کلیدواژه‌ها [English]

  • Available Fe
  • Bean
  • Soil Test
1- Aliehyaee, M. and Behbahanizadeh, A. A. 1996. Description of soil chemical analysis methods. Soil and Water Research Institute. Technical Bulletin No: 893. (n Persian)
2- Allison, L. E. and Moodie, C. D. 1965. Carbonate. p. 1379-1396. In C. A. Black (ed), Methods of Soil Analysis. Part II. American Society Agronomy, Inc., Madison, Wis, USA.
3- Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464- 465.
4- Campbell, C. R., and Plank, C. O. 1998. Preparation of plant tissue for laboratory analysis. P. 37– 49. In Kalra, Y. P. (ed), Handbook of reference methods for plant analysis, Boca Raton Fl.: CRC Press.
5- Cate, R. B. Jr. and nelson, L. A. 1971. A Simple Statistical Procedure For Partitioning Soil test correlation data into two classes. Soil Science Society of America Proceeding. 35: 658- 660.
6- Chakeralhousseini, M. R. and Ronaghi, M. 2000. Evaluation of iron status in corn and soybean by using the chlorophyll meter model Spad- 502 in a calcareous soil. 6th Iranian Congress of Soil Science. (in Persian)
7- Chapman, H. D. 1965. Cation- exchange capacity. p. 891- 901. In C. A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
8- Chen, Y. and Barak, P. 1982. Iron nutrition of plants in calcareous soils. Advances in Agronomy. 35: 217- 240.
9- Chung qin, Z. Zhang, F. Daru, M. Zou, C. Zhang, F. and Mao, D. 1997. Effect of iron, nitrogen forms and shading on uptake and distribution of other nutrient elements in bean plant. I. Fe, Mn, Cu, Zn. Journal of China Agricultural University. 2: 37- 43.
10- Ellsworth, J.W. Jolley, V.D. Nuland, D. and S. Blaylock, A. D. 2008. Screening for resistance to iron deficiency chlorosis in dry bean using iron reduction capacity. Journal of Plant Nutrition. 20: 1489- 1502.
11- Franzen, D. W. and Moraghan, J. 1995. Fertilizing Pinto, Navy, and other dry edible bean. NDSU Extension Service. no. SF- 720.
12- Garg, O. K and Hemantaranjan, A. 2008. Iron sources in relation to leaf senescence in French bean (phaseolus vulgaris L.). Journal of Plant Nutrition. 11: 1205- 1215.
13- Haby, V. A. Russelle, M. P. and Skogley, E. O. 1990. Testing Soils for Potassium, Calcium, and Magnesium. P. 181- 227. In R. L. Westerman (ed.) Soil testing and plant analysis. 3rd Ed. Soil Science Society of America, Madison, WI.
14- Khodshenas, M. A. and Dadivar, M. 2006. Study distribution of soil nutrient status under bean cultivation in Markazi province. The first Iranian pulse crop symposium. (in Persian)
15- Krouma, A. Gharsalli, M. and Abdelly. C. 2003. Differences in response to iron deficiency among some lines of common bean. Journal of Plant Nutrition. 26: 2295- 2305.
16- Lindsay, W. L. 1979. Chemical equilibria in soils. Wiley Inter Science, New Yourk, NY.
17- Luo, Y.W. Xie, W. H. Xu, M. and Luo, F. X. 2012. Effects of phytase and polyphenol oxidase treatments on in vitro iron bioavailability in faba bean (Vicia faba L.). Journal of Plant Nutrition. 10: 165- 171.
18- Marjouee, A. and Solhi, M. 2001. Determination of critical level of trace elements and their interaction on the increase of the irrigated wheat production in Isfahan province. Proceedings of the 7th Iranian Soil Science Congress. (in Persian)
19- Mckenzie, R. H. Middleton, A. B. Seward, K. W. Gaudiel, R. Wildschut, C. and Breme, E. 2001. Fertilizer responses of dry bean in Southern Alberta. Canadian Journal of Plant Science. 81: 343- 350.
20- Moraghan, J. T. and Grafton, K. 1999. Seed- Zinc Concentration and the zinc – efficiency trait in Navy bean. Soil Science Society of America Journal. 63: 918- 922.
21- Peech, M. 1965. Hydrogen ion activity. p. 914- 925. In C. A. Black (ed), Methods of Soil Analysis. Part 2. Am. Soc. Agron, Inc., Madison, Wis, USA.
22- Rehm, G. Schmitt, M. and Eliason, R. 1997. Fertilizer recommendation for edible beans in Minnesota, University of Minnesota Extension Service. Fo – 6572- Goo.
23- Römheld, V. and Nikolic, M. 2007. Iron. p. 329- 345. In: Barker, A. V. and Pilbeam, D. J. (ed.) Handbook of Plant Nutrition. CRC Press, Taylor & Francis Group.
24- Sims, J. T. and Johnson, G. V. 1991. Micronutrient soil tests. In (ed.) Micronutrients in agriculture. 2ed Ed. Soil Science Society of America, Madison, WI.
25- Walkley, A. and Black, I. A. 1934. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 37: 29- 37.
26- Zhang, C. Römheld, V. and Marschner, H. 2008. Distribution pattern of root‐ supplied 59iron in iron‐sufficient and iron‐ deficient bean plants. Journal of Plant Nutrition. 18: 2049- 2058.
27- Ziaeian, A. and Malakouti, M. J. 2000. Determination of critical limit and the effect of nutrients on the yield and composition of micronutrients fortification of wheat in calcareous soils of Fars Province. 6th Iranian Congress of Soil Science. (in Persian)