تأثیرکادمیم بر صفات رویشی، شاخص‌های فیزیولوژیکی و بیوشیمیایی تربچه نقلی (Raphanus sativus L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

شهیدچمران اهواز

چکیده

به منظور بررسی تأثیر کادمیم بر صفات رویشی، شاخص‌های فیزیولوژیکی و بیوشیمیایی در گیاه تربچه نقلی آزمایشی در مزرعه دانشکده کشاورزی دانشگاه شهید چمران اهواز در به صورت طرح فاکتوریل بر پایه بلوک‌های کامل تصادفی با دو تیمار و 3 تکرار اجرا گردید. تیمارها شامل کلریدکادمیم در سه سطح (0(شاهد)، 30 ، 60. میلی‌گرم در کیلوگرم)، دو زمان برداشت (بلوغ تجاری (زمان اول) و یک هفته پس از بلوغ تجاری (زمان دوم)) بود. صفات مورد اندازه‌گیری طی دو زمان برداشت شامل وزن تر و خشک بخش زیرزمینی و بخش هوایی، سطح برگ و تعداد برگ، طول و عرض برگ و طول ریشه، شاخص‌های فیزیولوژیکی شامل نشت الکترولیت و محتوای رطوبت نسبی (RWC) و شاخص‌های بیوشیمیایی شامل کلروفیل b, a، کلروفیل کل، کارتنوئیدها، پرولین، ویتامین ث هیپوکوتیل بود. نتایج نشان داد که کادمیم ویژگی‌های رشدی (وزن تر و خشک) را کاهش داد. همچنین کادمیم باعث کاهش معنی‌دار سطح برگ، تعداد برگ، طول و عرض برگ و طول ریشه گردید. غلظت 60 میلی‌گرم درکیلوگرم کادمیم نشت الکترولیت (2/28 درصد) و میزان پرولین (8/48 میلی‌گرم در گرم) را نسبت به گیاه شاهد افزایش داد. محتوای رطوبت نسبی تحت تنش کادمیم کاهش یافت. شاخص‌های بیوشیمیایی شامل کلروفیل aو b، کلروفیل کل، کارتنوئیدها، ویتامین ث کاهش معنی‌داری مشاهده شد. در غلظت‌های به کار برده شده، غلظت 60 کادمیم بیشترین اثر را در مقایسه با غلظت 30 میلی‌گرم در کیلوگرم روی شاخص‌ها نشان داد. بیشترین تجمع کادمیم در گیاه در غلظت 60 کادمیم مشاهده شد. به ‌نظر می‌رسد افزایش غلظت کادمیم از طریق کاهش شاخص‌های فیزیولوژیکی باعث کاهش ویژگی‌های رشدی در تربچه می-شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cadmium on Vegetative Traits, Physiological and Biochemical Indexes of Radish (Raphanus sativus L.)

نویسنده [English]

  • k. dalvand
Shahid Chamran Unicersity of Ahvaz
چکیده [English]

Introduction: Among wide variety of soil pollutants including heavy metals, acidic precipitation and other toxicants, the importance of heavy metals due to their pollution capacity has received growing attention in recent years. Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary, nutritional, and environmental reasons. Of all non-essential heavy metals, cadmium (Cd) is perhaps the metal that has attracted the most attention in soil science and plant nutrition due to its potential toxicity to humans, and also its relative mobility in the soil–plant system. The uptake of ions takes place in competition with that of elements such as Zn, P, Cl–, Ca, and Cu. Soil, environmental, and management factors impact the amount of Cd accumulated in plants (Hart et al., 1998). Much of the Cd taken up by plants is retained in the roots, but a portion is translocated to the aerial portions of the plant and into the seed. The amount of Cd accumulated and translocated in plants varies with species and with cultivars within species. Cd toxicity causes inhibition and abnormalities of general growth in many plant species. After long-term exposure to Cd, roots are mucilaginous, browning, and decomposing; reduction of shoots and root elongation, rolling of leaves, and chlorosis can occur. Cd was found to inhibit lateral root formation while the main root became brown, rigid, and twisted. The changes in the leaf included alterations in chloroplast ultrastructure, low contents of chlorophylls, which caused chlorosis, and restricted activity of photosynthesis. Radish (Raphanus sativus) is a root vegetable grown and consumed all over the world and is considered as a part of the human diet, even though it is not common among some populations. Usually, people eat radishes raw as a crunchy vegetable, mainly in salad, while it also appears in many European dishes. Some people, at least in the Middle East, prefer to drink its juice in pursuit of certain health benefits. Radishes have different skin colors (red, purple, black, yellow, and white through pink), while its flesh is typically white. In addition, the edible root of radish varies in its flavor, size, and length throughout the world.
Materials and Methods: In this study, we investigated the influence of Cd application rates on vegetative parameters, and physiological and biological indexes of radish. The experimental design was a factorial with randomized block with two treatments and three replications carried out at the Research Farm of College of Agriculture, Shahid Chamran University. Treatments included three rates of Cd application of 0 (control), 30 and 60 mg kg-1, and two harvesting dates of commercial maturity (CM) and a week after CM, hereafter referred to as 1st and 2nd harvesting dates. Measurements included vegetative parameters such as wet and dry weights, leaf area, length and width of leaves, leaf numbers and root length. Physiological indexes of electrolyte leakage and relative humidity, and biochemical indexes of chlorophyll a, b and total, Cartonoeid, Proline and vitamin C were also determined.
Results and Discussion: The results indicated that the Cd application reduced all of the vegetative parameters. Application of 60 mg kg-1 of Cd increased the electrolyte leakage by 28.2% and Proline concentration by 48.8 mg g-1. Cd application increased the relative humidity. All biochemical indexes decreased as the Cd application rates increased. The maximum concentration of Cd in plant was observed at 60 mg kg-1 Cd contamination. It seems that decrease of physiological indices due to increased Cd concentration reduced the growth properties.
Conclusion: Application of different Cd concentrations affected the vegetative, physiological and biochemical properties. By increasing Cd concentration of soil, the Cd accumulation in the plant increased. Increasing the Cd concentration increased the electrolyte leakage and proline concentration and reduced the content of relative humidity, chlorophyll, vitamin C in radish. In addition, it decreased yield including fresh and dry weights, root length, leaf area, leaf length and width, and number of radish leaves. Further, the effects of degradation on vegetative, physiological and biochemical characteristics of radish were one week after commercial maturity more than the first time (commercial maturity). Therefore, the phosphorus-containing Cd for the cultivation of vegetables, especially tubers, such as radishes, as well as harvest management, should be carefully applied.

کلیدواژه‌ها [English]

  • Cd
  • Physiological indexes
  • Proline
1- Abou Auda M., and Elshakhali E. 2010. Cadmium and zinc toxicity effects on growth and mineral nutrients of carrot (Daucus carota). Pakistan Journal of Botany, 42(1): 341-351.
2- Bates L.S., Waldren, R. P., and Teare I. D. 1973. Rapid determination of proline for water stress studies, Plant Soil, 39: 205–207.
3- Barcelo J., Poschenrieder C., Andreu I., and Gunse B. 1986. Cadmium– induced decrease of water stress resistance in bush been plants (L. cv. contender). I. Effects of Cd on water potential, relative water content, and cell wall elasticity. Journal Plant Physiology, 125:17-25.
4- Behtash F., Tabatabaee S.J., Malakooti M.J., Sororoaldin M.H., and Oustan Sh. 2009. Effect cadmium and Silicon on growth and some physiological properties of red beet. Journal of Sustainable Agricultural Science, 20.2 (1): 53-67.
5- Borraccino G., Mastropasqua L., DeLeonardis S., and Dipierro S. 1994. The role of ascorbic acid system in delaying the senecence of oat (Avena sativa L.) leaf segments. Journal of Plant Physiology, 144: 161–166.
6- Chen X., Wang j., Shi Y., Zhao M.Q., and Chi Y. 2010. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Physiology, 52: 41-46.physiology
7- Chen S.L., and Kao C.H. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regulation, 17:67-71.
8- Cho U. H., and Park J.O. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156:1-9.
9- DiCagno R., Guidini L., DeGara L., and Soldatini G.F. 2001. Combined cadmium and ozone treatment affect photosynthesis and ascorbate-dependent defense in sunflower. New Phytologist, 151, 627-636.
10- Farouk S., Mosa A.A., Taha A.A., Ibrahim H.M., and El-Gahmery A.M. 2011. Protective Effect of Humic acid and Chitosan on Radish (Raphanus sativus L. Var. sativus) plant subjected to Cadmium stress. Journal of stress physiology and Biochemistry, 7(2): 99-116.
11- Gouia H., Ghorbal M.H., and Meyer C. 2001. Effect of cadmium on activity of nitrat reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology, 38:629-638.
12- Haghiri F. 1973. Cadmium uptake by plant. Journal of Environmental Quality, 2:93-95.
13- Haghighi M., Kafi M., Sadat Taqavi P., Kashi A.K., and Savabeghi Gh. 2008. The variation of lettuce enzyme photosynthesis activity under the influence of lettuce toxicity. Journal of Horticulture (Science and Technology of Agriculture), 22: 2-26.
14- Hegedus A., Erdi S., and Horvath G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlingNunder cadmium stress. Plant Science, 160:1085-1093.
15- Hernandez Y., Lobo M.G., and Gonzalen M. 2006. Determination of vitamin c in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96: 654-664.
16- Hodaji M., and Jalalian A. 2004. Distribution of nickel, manganese and cadmium in dung and agricultural products in the Mobarakeh Steel Company. Science and Technology of Agriculture and Natural Resources, 3: 66-55.
17- Karim G., and Nojavan M. 2007. Effect of cadmium on growth parameters, proline content, sugars and soluble protein in lentils (Lens miller), Research and Development in Agriculture and Horticulture, 76: 53-47.
18- Khan D.H., and Frankland B. 1983. Effect of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant and Soil, 70:335-345.
19- Lin L.D., HU K., Majing J., Qiu W., Wang P., and Zhang Sh. 2011. Effects of cadmium on the growth and physiological characteristics of sorghum plants. African Journal of Biotechnology, 10(70) 15771-15776.
20- Lindsay W.L., and Norvell W.A. 1978. Development of DTPA soil test for zinc, Iron, manganese, and copper. Soil Science Society American Journal, 42: 421-428.
21- Lichtenthaler H.K. 1987. Chlorophylls and Cartenoides: Pigmentsof hotosynthetic bio-membranes. In: Methods in Enzymol. (eds. S.P. Colowick and N.O. Kaplan) Academic Press. New York, 48: 350-382.
22- Mazhoudi A., Chaoui M.H., Ghorbal E., and Ferjani E. 1997. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science, 127, 129-137.
23- Mok M. 1994. Cytokinins and plant development- An overview. PP. 155-166. In: Mok, D. and M. Mok (Eds.), Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.
24- Mishra S., Tripathi R. D., Srivastava S., Dwivedi S., and Kumar T. 2009. Thiol metabolism play signicant role during cadmium detoxi, cation by Ceratophyllum demersum L. Bioresource Technology, 100: 2155-2161.
25- Nazemi S., and Khosravi A. 2011. A Survey on the Status of Heavy Metals in Soil, Water, and Vegetable Land. Journal of Knowledge and Health, 5(4): 31-28.
26- Ouzounidou G. 1995. Cu-ions mediated changes in growth chlorophyll and other ion contents in cu-tolerant koleria splenders. Biology Plantarum, 37:71-79.
27- Oliveira J., Oliva M., and Cambraia J .1994. Effect cadmium on cholorophyll contents and on peroxidase activity in soybean. Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, MG. 36570-000, Brazil.
28- Peyvast Gh. 2009. Vegetables. Scholarly Publishing. Fifth Edition. 577 p.
29- Pourakbar L., and Ashrafi R. 2011. Effect of cadmium on hydrogen peroxide production and activity of some antioxidant enzymes in corn (Zea mays L.). Tarbiat Moallem University of Science, 9(3): 484-473.
30- Ritchie S. W., and Nguyen H.T. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30: 105-111.
31- Sanitadi Toppi L., and Gabbrielli R. 1999. Response to cadmium in higher plants- review. Environmental and Experimental Botany, 41:105-130.
32- Salaskar D., Shrivasta M., and Kale S.P. 2011. Bioremidation Potential of spinach (Spinacia olelacea L.) for decontamination of cadmium in soil. Current Science, 101:1-5.
33- Solomon A., and Beer S. 1994. Effect of NaCl on the carboxylating activity of rubisco and absence of proline related compatible solutes. Plant Physiology, 108: 1387- 1394.
34- Sharma R.K., Agrawal M., and Marshal A. 2007. Heavy metal contamination of soil and vegetables in surburban area of Varanasi, India. Ecotoxicology and Environmental Safety, 66: 258-266.
35- Taji H., and Golchin A. 2010. Investigation of different levels of cadmium and sulfur on yield and concentration of cadmium and some of the low-level elements in maize leaf and corn root (Zea mays L.) in greenhouse conditions, Science and Technology of Greenhouse Cultivars, 4: 32-23.
36- Vitoria A.p., Dacunha M., and Azevedo R.A. 2005. Ultra-structural changes of radish leaf exposed to cadmium. Enviromental and Experimental Botany, 58: 47-52.
37- Vassilev A., and Yordanov I. 1997. Reductive analysis of factors limiting growth of cadmium treated Plants. Plant Physiology, 23(3–4), 114–133.
38- Wallace DM. 1987. Large and Small Phenol Extraction Methods in Enzymology, Academic Press, New York.
39- Zhao Y., Aspinall D., and Paleg L.G. 1992. Protection of membrane integrity in Medicago saliva L. by glycinebetaine against the effects of freezing. Journal of Plant Physiology, 140: 541-543.
40- Zhang H.H., Tang M., and Zheng C. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology, 46: 306-311.
CAPTCHA Image