اثر زغال‌های زیستی تهیه‌شده در دماهای مختلف بر قابلیت استفاده روی و پاسخ‌های ذرت در یک خاک آلوده به روی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شهرکرد

چکیده

فعالیت‌های انسانی، نقش مهمی بر توزیع ژئوشیمیایی فلزات سنگین داشته‌است و باعث ورود بیش از حد مجاز آنها به محیط زیست شده‌است. وجود فلزات سنگین در محیط زیست، اثرات سوئی بر خاک، آب‌های سطحی و آب‌های زیرزمینی دارد و حیات موجودات زنده را با خطرات جدی مواجه می-کند. اخیراً زغال زیستی به صورت گسترده‌ای جهت کاهش سمیت فلزات سنگین در خاک استفاده می‌شود. هدف این مطالعه بررسی تأثیر دمای گرماکافت زغال زیستی برگ گردو بر قابلیت استفاده و پاسخ‌های رشد ذرت در یک خاک شن‌لومی آهکی آلوده به فلزات سنگین بوده است. بدین منظور، در آزمایشی گلدانی مقادیر 0، 5/0، 1 و 2 درصد (وزنی) زغال زیستی تهیه‌شده در دماهای 200، 400 و 600 درجه سلسیوس با 3 کیلوگرم خاک در 3 تکرار مخلوط و به‌مدت 45 روز در شرایط گلخانه خوابانده شد. پس از خواباندن، در هر گلدان ذرت علوفه‌ای (رقم سینگل‌کراس 704) کشت و پس از دو ماه، پاسخ‌های رشد ذرت (وزن خشک اندام هوایی، وزن خشک ریشه، غلظت روی در اندام هوایی، غلظت روی در ریشه، ضریب تجمع زیستی و ضریب انتقال) و غلظت روی قابل استفاده (محلول و DTPA-TEA) خاک تعیین شد. نتایج نشان داد که با افزایش دمای گرماکافت زغال زیستی، رشد ذرت و ضریب انتقال روی افزایش می‌یابد. همچنین تیمار خاک‌ها با 2 درصد زغال زیستی تهیه‌شده در دمای 600 درجه سلسیوس، غلظت روی در اندام هوایی و ریشه را به‌ترتیب 6/21 و 0/33 درصد کاهش و وزن خشک اندام هوایی و ریشه را به‌ترتیب 4/131 و 7/116 درصد نسبت به شاهد افزایش داد. ضریب انتقال روی در سطوح مختلف زغال زیستی تفاوت معنی‌داری نداشت (05/0P>). نتایج نشان داد که با افزایش مقدار و دمای تهیه زغال‌های زیستی، غلظت روی محلول و روی عصاره‌گیری‌شده با DTPA-TEA کاهش معنی‌داری یافت (05/0P

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Biochars Produced at Different Temperatures on the Availability of Zinc and Maize (Zea mays L.) Responses in a Contaminated Soil

نویسندگان [English]

  • Parvin Kabiri
  • hamid reza motaghian
  • Alireza Hosseinpur
Shahrekord University
چکیده [English]

Introduction: Anthropogenic activities have transformed the global geochemical cycling of heavy metals. Mine tailings are of great concern due to the detrimental effects of toxic inorganic elements causing environmental risks. Zinc (Zn) as an essential element is required in small amounts for various biochemical reactions and physiological functions. However, high concentrations of Zn can induce oxidative stress. Applying an organic amendment is a promising, in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal in contaminated soils. The application of biochar as an amendment may be a solution to reduce the risk of pollutant diffusion. Biochars is a fine-grained biological residue combusted under low oxygen conditions, resulting in a porous, stable carbon-based material. The potential biochar applications include carbon sequestration, soil fertility improvement, and pollution remediation; therefore, it can reduce pollutants mobility and bioavailability.
Materials and Methods: Results of this research indicated that biochars decreased Zn concentration in maize shoots and roots. They reduced Zn concentration in the shoot/root of maize. Zinc concentration in shoots and roots of maize (Zea mays L.) harvested at 60 days after sowing, decreased with increasing thermochemical temperature and application rate of biochar. In treated soil with 2% (w/w) biochar prepared at 600 °C, Zn concentration in shoots and roots decreased by 21.6 and 33.0 % respectively (p

کلیدواژه‌ها [English]

  • Heavy metals
  • phytostabilization
  • Pyrolysis
1- Ahmad M., Ok Y.S., Rajapaksha A.U., Lim J.E., Kim B.Y., Ahn J.H., Lee Y.H., Al-Wabel M.I., Lee S.E., and Lee S.S. 2016. Lead and copper immobilization in a shooting range soil using soybean stover and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301:179-86.
2- Ali A., Guo D., Zhang Y., Sun X., Jiang S., Guo Z., Huang H., Liang W., Li R., and Zhang Z. 2017. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Scientific reports, 7(1):p.2690.
3- Al-Wabel M.I., Usman A.R.A., El-Naggar A.H., Aly A.A., Ibrahim H.M., Elmaghraby S., and Al-Omran A. 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22:503–511.
4- Archanjo B.S., Mendoza M.E., Albu M., Mitchell D.R.G., Hagemann N., Mayrhofer C., Mai T.L.A., Weng Z., Kappler A., Behrens S., Munroe P., Achete C.A., Donne S., Araujo J.R., van Zwieten L., Horvat J., Enders A., and Joseph S. 2017. Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 294:70–79.
5- Arenas-Lago D., Carvalho L.C., Santos E.S., and Abreu M.M. 2016. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. Ecotoxicology and environmental safety, 129:219–227.
6- Branzini A., Gonzalez RS., and Zubillaga M. 2012. Absorption and translocation of copper, zinc and chromium by Sesbania virgata. Journal of environmental management, 102:50-54.
7- Brunauer S., Emmett P.H., and Teller E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2):309-319.
8- Chen Y., Xie T., Liang Q., Liu M., Zhao M., Wang M., and Wang G. 2016. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes. Environmental Science and Pollution Research, 23:7757-7766.
9- Cheng C.H., Lehmann J., and Engelhard M.H. 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6):1598-1610.
10- Dai S., Li H., Yang Z., Dai M., Dong X., Ge X., Sun, M., and Shi L. 2018. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Human and Ecological Risk Assessment: An International Journal, 1-14.
11- Eid E.M., and Shaltout K.H. 2016. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dumpsite. International Journal of Phytoremediation, 18(11):1075-1085.
12- Esfandbod M., Merritt C.R., Rashti M.R., Singh B., Boyd S.E., Srivastava P., Brown C.L., Butler O.M., Kookana R.S., and Chen C. 2017. Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel. Environmental Pollution, 220:946–954.
13- Galal T.M., and Shehata H.S. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48:244-251.
14- Gee G.W., and Bauder J.W. 1986. Particle size analysis. p. 475-490. In: Klute A. (ed.) Methods of Soil Analysis. Part l.2nd edition. Agron. Monogr. 9. ASA and SSSA, Madison, Wisconsin.
15- Hofmann. N. R. 2012. Nicotianamine in zinc and iron homeostasis. Plant Cell, 24. 373.
16- Hosseinpur A., and Motaghian H. 2018. Soil Testing (Correlation, Calibration, and Fertilizer Recommendation Studies), Shahrekord University.
17- Houben D., Evrard L., and Sonnet P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57:196-204.
18- Kabata-Pendias A., and Pendias H. 2001. Trace Elements in Soils and Plants. Third Ed. CRC Press. Boca Raton, London.
19- Kumar A., Tsechansky L., Lew B., Raveh E., Frenkel O., and Graber E.R. 2018. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Science of The Total Environment, 618:188-198.
20- Leoppert R.H., and Suarez D.L. I996. Carbonate and gypsum. p. 437-447. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
21- Liang J., Liu J., Yuan X., Dong H., Zeng G., Wu H., Wang H., Liu J., Hua S., Zhang S., Yu Z., He X., and He Y. 2015. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 273:101-110.
22- Liang J., Zhong M., Zeng G., Chen G., Hua S., Li X., Yuan Y., Wu H., and Gao X. 2017. Risk management for optimal land use planning integrating ecosystem services values: a case study in Changsha, Middle China. Science of the Total Environment, 579:1675-82.
23- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42:421-428.
24- Liu J., Wang J., Qi J., Li X., Chen Y., Wang C., and Wu Y. 2012. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China. Clean–Soil, Air, Water, 40(7):766-772.
25- Liu T., Liu B., and Zhang W. 2014. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Polish Journal of Environmental Studies, 23(1):271-275.
26- Liu W., Wang S., Lin P., Sun H., Hou J., Zuo Q., and Huo R. 2015. Response of CaCl2-extractable heavy metals, polychlorinated biphenyls, and microbial communities to biochar amendment in naturally contaminated soils. Journal of Soils and Sediments, 16(2):476-485.
27- Mohamed I., Zhang GS., Li Z.G., Liu Y., Chen F., and Dai K. 2015. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84:67-76.
28- Mukhopadhyay M., Das A., Subba P., Bantawa P., Sarkar B., Ghosh P., and Mondal T.K. 2012. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biologia Plantarum, 57(3):474-480.
29- Nawab J., Khan S., Shah M.T., Gul N., Ali A., Khan K., and Huang Q. 2016. Heavy metal bioaccumulation in native plants in chromite impacted sites: a search for effective remediating plant species. CLEAN–Soil, Air, Water, 44(1):37-46.
30- Nelson D.W., and Sommers L.E. 1996. Carbon, organic carbon and organic matter. p. 961-1010. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
31- O'Connor D., Peng T., Zhang J., Tsang D.C., Alessi D.S., Shen Z., Bolan N.S., and Hou D. 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Science of The Total Environment, 619:815-826.
32- Park J.H., Choppala G.K., Bolan N.S., Chung J.W., and Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348:439-451.
33- Puga A.P., Abreu C.A., Melo L.C.A., and Beesley L. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159:86–93.
34- Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. p. 417-435. In: Sparks D.L. (ed.) Methods of Soil Analysis. SSSA, Madison.
35- Ruiz E., Azcarate J. A., Rodriguez L., and Rincon J. 2009. Assessment of metal availability in soil from a Pb- Zn mine site of South-Central Spain. Soil and Sediment Contamination, 18:619-641.
36- Sposito G., Lund L.J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46:260-265.
37- Sumner M.E., and Miller P.M. 1996. Cation exchange capacity and exchange coefficient. p. 1201-1230. In Sparks D.L. (ed.) Methods of Soil Analysis. SSSA. Madison.
38- Tembo B.D., Sichilongo K., and Cernak J. 2006. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere, 63:497–501.
39- Thomas G.W. 1996. Soil pH and soil acidity. In: Sparks D.L. (ed.) Methods of soil Analysis. SSSA, Madison.
40- Uchimiya M., Wartelle L.H., Klasson K.T., Fortier C.A., and Lima I.M. 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59:2501–2510.
41- Wang P., Tang L., Wei X., Zeng G., Zhou Y., Deng Y., Wang J., Xie Z., and Fang W. 2017. Synthesis and application of iron and zinc doped biochar for removal of nitrophenol in wastewater and assessment of the influence of co-existed Pb(II). Applied Surface Science, 392:391-401.
42- Yathavakulasingam T., Mikunthan T., and Vithanage M. 2016. Acceleration of Lead Phytostabilization by Maize (Zea mays L.) in Association with Gliricidiasepium Biomass. Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka, 2(5):16-21.
43- Yousaf B., Liu G., Wang R., Zia-ur-Rehman M., Rizwan M.S., Imtiaz M., Murtaza G., and Shakoor A. 2016. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environmental Earth Sciences, 75(5):374.
44- Yousaf B., Liu G., Abbas Q., Ullah H., Wang R., Zia-ur-Rehman M., and Niu Z. 2017. Addition of biochar nanosheets to soil alleviate health risks of potentially toxic elements via consumption of wheat grown in an industrially contaminated soil. Chemosphere, 1:161-170.
45- Zhang G., Guo X., Zhao Z., He Q., Wang S., Zhu Y., Yan Y., Liu X., Sun K., Zhao Y., and Qian T. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution, 218:513-522.
CAPTCHA Image