بررسی مقدار تریتیوم (3H) در نزولات جوی و تعیین سن نسبی منابع آب‌های زیرزمینی در غرب کرمانشاه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

تریتیوم تنها ایزوتوپ رادیواکتیو هیدروژن، با نیمه‌عمر حدود 3/12 سال، موجود در ملکول آب است که می‌توان از آن برای تعیین سن آب در چرخه هیدرولوژیکی استفاده نمود. هرچند که آزمایش بمب‌های هیدروژنی به مقدار زیادی تریتیوم وارد اتمسفر و سپس وارد چرخه هیدرولوژیکی نموده است، اما در حال حاضر متوسط غلظت تریتیوم موجود در بارندگی‌های دنیا به حدود 5TU  رسیده است. غلظت تریتیوم موجود در بارندگی به طول و عرض جغرافیایی، دما، ارتفاع و میزان رطوبت نسبی نیز بستگی دارد. هرچه میزان رطوبت نسبی بیشتر و دما کمتر و یا ارتفاع بیشتر باشد از غلظت تریتیوم کاسته می‌شود. در مقیاس جهانی مقدار غلظت تریتیوم در بارندگی در نیمکره شمالی بیشتر از نیمکره جنوبی بوده و در منطقه قطبی تقریباً 4 برابر منطقه استوایی می‌باشد. اما در بارندگی‌های کشورهای همسایه ایران، کشورهای نزدیک به دریا (در کراچی، بحرین، آنکارا و آدنا) به دلیل افزایش بخار آب در جو، مقدار تریتیوم کمتری دارند. در این مقاله، غلظت تریتیوم در بارندگی‌ها و منابع آب زیرزمینی غرب استان کرمانشاه در آزمایشگاه ایزوتوپی دانشگاه واترلو کانادا اندازه‌گیری شده و سپس با استفاده از رادیوایزوتوپ تریتیوم، سن نسبی منابع آب زیرزمینی تعیین ‌شده است. نتایج به دست آمده نشان می‌دهد که مقدار غلظت تریتیوم در بارندگی‌های غرب استان کرمانشاه حدود 6 TU و در آب‌های زیرزمینی بسیار کمتر از این مقدار می‌باشد. با توجه به تقسیم‌بندی آب‌ها بر اساس غلظت تریتیوم، آب نزولات جوی غرب استان کرمانشاه جدید (مدرن) و آب منابع آب زیرزمینی در محدوده آب‌های اخیراً تغذیه ‌شده و آب‌های نسبتاً قدیمی یا ساب مدرن (آب‌های تغذیه‌ شده قبل از سال 1950) به دست آمد. نمودار ترکیبی مقدار هدایت الکتریکی(EC)  و مقدار غلظت تریتیوم در آب‌های منطقه، نشان می‌دهد که با افزایش EC در جهت جریان، مقدار تریتیوم کاهش و سن آب زیرزمینی افزایش می‌یابد. سن منابع آب زیرزمینی در منطقه پاوه به دلیل توسعه کارست و انتقال سریع آب‌های زیرزمینی، کمتر از مناطق سرپل ذهاب و روانسر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the amount of Ttritium (3H) in Precipitations and Determining the Relative Age of Groundwater Resources in West of Kermanshah

نویسندگان [English]

  • Hossein Mohammadzadeh
  • Toba Soleymani valikandi
Ferdowsi University of Mashhad
چکیده [English]

Introduction: Tritium is the only radioactive isotope of hydrogen, with a half-life of about 12.3 years, in water molecule which can be used to determine the age of water in a hydrological cycle. Although hydrogen bomb tests entered a lot of tritium into the atmosphere and then into the hydrological cycle, but at the moment the average amount of tritium concentration in global precipitations is reaching to about 5 TU. The purpose of this paper is to investigate the tritium concentrations in precipitations of the Middle East countries and to determine the tritium concentration in Iran precipitation (especially in precipitations of the west of Kermanshah province) and to determine the relative age of groundwater resources in Paveh, Javanrood, Ravansar and Sarpule Zahab areas using tritium radioisotope.
Materials and Methods: The required tritium data for the Iran and neighbors and for the global precipitations were retrieved from the Global Networks of Isotopes in Precipitation (GNIP) site of the International Atomic Energy Agency (IAEA). To measure the amount of tritium in Kermanshah precipitations, samples were collected from three rain stations, three wells and from nine springs in Paveh, Javanrood, Ravansar and Sarpule zahab areas during fall 2015 and 600 ml in 600 ml water polyethylene containers, all water samples were analysed at Waterloo University Isotope Laboratory.
Results and Discussion: The amount of tritium concentration in precipitations depends on latitude, longitude, temperature, altitude and the vapor mass. The higher amount of vapor and the lower temperature or the higher altitude, decreases the concentration of tritium. In areas such as Karachi, Bahrain and Adena, due to its proximity to the sea and the higher amount of vapor in the atmosphere, the tritium concentration in precipitation is low. In this paper, the tritium concentration in precipitation and groundwater resources of the west of Kermanshah province was measured at the University of Waterloo-Environmental Isotope Laboratory (UW-EIL). Then the average relative age of groundwater was determined. Results indicate that the tritium concentration in precipitation of the west of Kermanshah is about 6.0 TU and it is much lower in groundwater resources. Based on water age division using tritium concentration, the water of precipitations in the west of Kermanshah is modern and the water of groundwater resources are mixture of modern (recently recharge water) and sub modern water (the waters fed before 1950). By determining the amount of electrical conductivity (EC) and the concentration of tritium in the waters of the region, it is concluded that in the direction of flow, with increasing EC and decreasing the amount of tritium, the water age increases. By examining the EC and the relative age of the waters, it can be concluded that in the Sarpule Zahab area, in Ghaleh Shahin plain, groundwater recharge to the alluvial aquifer in Qaleh Shaheen spring area and then it flow in the direction toward Sarabgarm spring. However, in Boshive plain, the groundwater flow from Marab spring towards the Gandab spring. Tritium has a correlation with the air temperature. The higher the temperature, the more the concentration of tritium in the abundant water resources, and the older age for the water sample. In the study area, the average annual air temperature in the Paveh, Javanrood and Ravansar areas are about 15.1, 15.0 and 14.9 degrees Celsius, respectively, and it is about 19.9 degrees Celsius for Sarpule Zahab area. The average concentration of tritium in Pave and Javrroud is about 3.4 TU, however, in Ravansar and Sarpule Zahab areas are about 1.4 TU and 1.1 TU, respectively Therefore, it is evident that the relative age of groundwater is younger in the Paveh region and it is the oldest in Sarpule Zahab region.
Conclusions: The concentration of tritium is associated with the age of water. The lower the amount of tritium is the oldness of the water. The geology and rocks are affected by the movement of water, which is why the age of groundwater resources in the Paveh region due to the development of karst and the rapid transfer of groundwater is less than the Sarpule Zahab and Ravansar areas. On a global scale, the concentration of tritium in the northern hemisphere’s precipitations is much higher than that of in the southern hemisphere, and in the polar regions’ precipitations it is approximately 4 times of the tropical region’s precipitations. By investigating the concentration of tritium in the rain of neighboring countries of Iran it is concluded that the proximity to the sea and the increase of water vapor in the atmosphere have reduced the amount of tritium concentration.
 

کلیدواژه‌ها [English]

  • Keywords: Tritium
  • Age measurement
  • Rain
  • Groundwater resources
  • Iran
  • Kermanshah Province
1- Aghamohammadi M. 2011. Determination of the concentration of tritium in heavy water, master's thesis. Arak University. (In Persian)
2- Al Charideh A.R., and Abou Zakhem B. 2010. Distribution of tritium and stable isotopes in precipitation in Syria. Hydrological Sciences Journal.
3- Bayan M. 2010. Application of environmental isotopes technique in ground water recharge within mullusa carbonate aquifer-west Iraq. Iraqi Journal of Desert Studies Special Issue of 1st Scientific Conference, ISSN: 1994-7801.
4- Blavoux B., and Dazy J., and Sarrot Reynauld J. 1982. Informmation about the origin of thermomineral waters and gas by means of environmental isotopes in Azerbaijan, Iran, and Southeast France. Journal of Hydrology, 56:23–38.
5- Clark I.D., and Fritz P. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, Florida.
6- Clark I. 2015. Groundwater Geochemistry and Isotopes. CRC Press. Taylor & Francis Group, NewYork.
7- Craig H., and Lal D. 1960. The Production rate of natural tritium. Scripps Institution of Oceanography, University of California, La Joua.
8- Geyh M. 2000. Environmental isotopes in the hydrological cycle. Principles and Applications: International Hydrological Programme. Technical Documents in Hydrology, 39, Vol. IV.
9- Harms P., Visser A., and Moran J. 2016. Distribution of tritium in precipitation and surface water in California. Journal of Hydrology, 534: 63–72.
10- IAEA/WMO 2006. Global Network of Isotopes in Precipitation. The GNIP Database. http://www.iaea.org/water.
11- Kazemi G.A., Lehr J.H. and Perrochet P. 2006. Ground water Age. John Wiley & Sons, Hoboken, New Jersey.
12- Karimirad I., Hesam M., Bahrami Samani A., and Ezadpanah A. 2013. Dating of groundwater inaquifer of Golestan Province using tritium meagermant. Water and Soil Conservation, 20(6): 199-183. (In Persian with English abstract)
13- Karimirad I., Hesam M., Bahrami Samani A., and Ezadpanah, A., and Moghadasi N. 2016. Radioisotope technique of groundwater dating using tritium enrichment. Journal of Water and Sustainable Development, 4(1): 99-106. (In Persian with English abstract)
14- Kralik M., Benischke R., Wyhlidal S., and Philippitsch R. 2017. First water-isotope-map (δ18O, δ2H, 3H) of Austria: Applications, Extremes and Trends: Procedia Earth and Planetary Science, 17: 924– 927.
15- Mazor E. 2004. Chemical and Isotopic Groundwater Hydrology Third Edition. Marcel Dekker, New York.
16- Michelsen N., Reshid M., Siebert C., Schulz S., Knoller K., Weise S.M., and Schuth C. 2015. Isotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chemical Geology, 413: 51–62.
17- Mohammadzade H. 2016. Providing isotopic (18O and 2H) maps and the meteoric water line (18O vs. 2H) for Kermanshah Province (W of Iran) and determining the origin and residence time of Alluvial/Karstic groundwater using Geochemical/Isotopic tracers (project # KSHW-92123).
18- Morgenstern U., Daughney C. J., Leonard G., Gordon D., Donath F. M., and Reeves R. 2014. Using groundwater age to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand. Hydrology and Earth System Sciences Discussions, 11(8): 9907-9960.
19- Sogut A., and Hawash G.H. 2011. Groundwater evaluation by using environmental isotopes in the northeast missan governorate, South of Iraq. Latest Trends in Energy, Environment and Development.
20- Sood D.D., Manohar S.B., and Reddy A.V.R. 1994. Experimentals in Radiochemistry. Eds, Iancas Publication, Mumbai.
21- Tadoros C.V., Hughes C., Carwford J., Hollins S., and Chisari R. 2014. Tritium in Australian precipitation: A 50 years record. Journal of Hydrology, 513: 262–273.
CAPTCHA Image