تأثیر رژیم‌های مختلف آبیاری تحت سامانه آبیاری قطره‌ای زیر‌سطحی بر توزیع رطوبت خاک در باغات پسته دریک خاک لوم شنی (مطالعه موردی: سمنان)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 موسسه تحقیقات فنی و مهندسی کرج

2 دانشگاه شیراز

چکیده

شناخت تغییرات جبهه رطوبتی خاک یک شاخص مهم در مدیریت و طراحی سامانه آبیاری قطره­ای زیر­سطحی می­باشد. پژوهش حاضر با هدف بررسی تغییرات جبهه­ی رطوبتی خاک برای رژیم­های مختلف آبیاری در یک سامانه آبیاری قطره­ای زیرسطحی در باغ پسته، در یک خاک لوم شنی در منطقه‌­ی صفائیه، از توابع شهرستان سرخه در استان سمنان انجام شد. تیمارهای پژوهش شامل سه رژیم آبیاری منطبق بر مدیریت زارع (I1)، نیاز آبی (I2) و نیاز آبی و آبشویی (I3) بود و تغییرات جبهه­ی رطوبتی در عمق­های مختلف خاک در زمان قبل و بعد از آبیاری و در مراحل مختلف رشد بررسی شد. در سامانه آبیاری مورد مطالعه افزایش سطوح رژیم آبیاری منجر به افزایش میزان رطوبت در محیط ریشه شد و بیشترین مقدار برابر با 6/16 درصد در رژیم آبیاری I3 و در زمان بعد از آبیاری مشاهده شد. در رژیم آبیاری I1 میزان آب آبیاری به اندازه­ای بود که حرکت رطوبت به سمت بالای قطره‌چکان­ها در قبل و بعد از آبیاری اختلاف معنی­داری نداشت. نتایج نشان داد که رطوبت در عمق 75 سانتی­متری خاک نسبت به عمق 25 و 50 سانتی­متر دارای افزایش معنی­داری بود که به تجمع بیشتر ریشه­های مصرف­کننده آب در عمق 50-0 سانتی­متری نسبت داده شد. رژیم آبیاری I3 و عمق 75 سانتی­متری با مقدار 3/19 درصد بیشترین مقدار رطوبت را دارا بود که موجبات نفوذ عمقی را نیز فراهم می­کند. بالاترین مقدار رطوبت (5/22 درصد) در رژیم آبیاری I3 و در عمق 75 سانتی­متر و بعد از آبیاری و کم­ترین مقدار رطوبت (5/10 درصد) در رژیم آبیاری I1 در عمق 25 سانتی­متر و قبل از آبیاری نشان داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Different Irrigation Regimes under Subsurface Drip Irrigation System on Soil Moisture Distribution in Pistachio Orchard

نویسندگان [English]

  • H. Dehghanisanij 1
  • Hamidreza Haji Agha Bozorgi 2
  • AliAsghar Ghaemi 2
1 Agricultural Engineering Research Institute
2 Shiraz University
چکیده [English]

 
Introduction: Creating a uniform and adequate moisture in the root zone is one of the most challenging issues in irrigated lands. Use of irrigation systems with high water efficiency, such as sub-surface drip irrigation is recommended as a solution to reduce water losses. Information on soil moisture variation is an important factor for managing and designing a subsurface drip irrigation system. This study was conducted to evaluate the soil moisture variation for different irrigation regimes in a pistachio orchards equipped by a subsurface drip irrigation system (SDI).
 Materials and Methods: This study was carried out in a two-hectare of 10 years old pistachio orchard located in Semnan province, Iran ( located at 35°28ˊ N, 53°12ˊE and elevation of 1160 m above sea level) during the 2012-2013 growing season. The climate of the studied area is hot desert having an average annual precipitation of approximately 110 mm. Daily meteorological data such as the temperature, relative humidity, wind speed, rainfall, and solar radiation were collected from a meteorology station in farm. The soil was sandy loam textured with average field capacity and permanent wilting point of 12.23 and 5.01%, respectively. Subsurface drip irrigation system was equipped by EuroDrip Company emitters (PC2), inline, to a distance of 80 cm and with a discharge of 26.2 Lit/ hr installed at a depth of 40 cm. In this study, a factorial experiment in split plot design was used with three replications. Three irrigation treatments i.e. control (I1), Irrigation based on irrigation requirement (I2) and I2 plus leaching requirement (I3), and changes in the moisture front were investigated by weight sampling between two drip lines, between the trees rows, on the drip line and out of the drip line of each row, before and after irrigation and in development, middle and late season.
Results and Discussion: For the evaluated irrigation systems, increased levels of irrigation regime resulted in increased moisture content in the root zone. The higher average soil moisture (16.6 %) was measured after irrigation under I3. The I1 irrigation regime did not significantly change the soil moisture content in upper part of emitters before and after irrigation event. Average soil moisture content at different depths showed that the soil moisture content in 75 soil depth was significantly higher than that in 25 and 50 cm soil depth, which can be attributed to higher root water uptake by root in 0-50 cm soil depth. Bilateral impact of irrigation regimes and soil depth showed higher soil moisture content (19.3%) under I3 and 75 cm soil depth which may lead to deep percolation. Bilateral impact of irrigation regimes, soil depth, and time before and after irrigation event also resulted in higher soil moisture content (22.5 %) in 75 cm soil depth after irrigation under I3. The lowest soil water content (10.5 %) was measured in 25 soil depth before irrigation under I1.
Conclusion: The results of this study showed that I2 and I3 irrigation regimes did not show water shortage during growth season (before and after irrigation), but the I1 irrigation regime caused water scarcity. Therefore, the formation of continuous moisture profiles with low moisture in I1 irrigation regime was caused as a result of low irrigation during this period. Accumulation of moisture at depth of 50-75 cm from the soil surface, even under low irrigation conditions I1 irrigation regime, implies that irrigation time is not suitable for irrigation regimes. In general, in order to improve the irrigation management, it is necessary to reduce the irrigation intervals and have a more appropriate distribution of moisture in the soil profile.

کلیدواژه‌ها [English]

  • leaching Requirement
  • Moisture Front
  • Soil depth
  • subsurface drip irrigation
  • Irrigation time
1- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig. Drain. No, 56. FAO, Rome.
2- Amali S., Rolston D.E., Foltun A.E., Hanson B.R., Phen C.J., and Oster I.D. 1999. Soil water variabilityunder subsurface drp irrigation and furrow irrigation. Journal of Irrigation Science 17(4): 151-155.
3- Ayers R.S., and Westcot D.W. 1985. Water quality for agriculture (Vol. 29). Rome: Food and Agric Organization of the United Nations.
4- Badr A.E., and Aburab M.E. 2013. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Journal of Irrigation Science 31: 317-332.
5- Battam M.A., Sutton B.G., and Boughton D.G. 2003. Soil pits as a simple design aid for subsurface drip irrigation systems. Journal of Irrigation Science 22: 135-141.
6- Ben-Gal A., Lazorovitch N., and Shani U. 2004. Subsurface drip irrigation in gravelfilled cavities. Vadose Zone Journal 3: 1407-1413.
7- Beniwal R.K., Soni M.L., Yadava N.D., Prakash C., and Talwar H.S. 2006. Effect of irrigation scheduling on moisture and salt distribution and growth of Kagji lime under drip irrigation in arid Rajasthan. Annals of Arid Zone 45(2): 169.
8- Cote C.M., Bristow K.L., Charlesworth P.B., Cook F.J., and Thorburn P.J. 2003 Analysis of soil wetting and solute transport in subsurface trickle irrigation. Journal of Irrigation Science 22: 143–156.
9- Dehghanisanij H., Agassi M., Anyoji H., Yamamoto T., Inoue M., and Eneji A.E. 2006. Improvement of saline water use under drip irrigation system. Journal of Agricultural Water Management 85: 233–242.
10- Dos Santos L.N., Matsura E.E., Gonçalves I.Z., Barbosa E.A., Nazario A.A., Tuta N.F., Elaiuy M.C., Feitosa D.R., and de Sousa A.C. 2016. Water storage in the soil profile under subsurface drip irrigation: Evaluating two installation depths of emitters and two water qualities. Journal of Agricultural Water Management 170: 91-98.
11- Douh B., Boujelben A., Khila S., and Mguidiche A.B.H. 2013. Effect of subsurface drip irrigation system depth on soil water content distribution at different depths and different times after irrigation. Larhyss Journal 13: 7-16.
12- Farshi A.A., Shariati M.H., Jarollahi R., Ghaemi M.H., Shabifar M., and Tolaei M.M. 1997. Estimated water requirement major plants agricultural and horticultural of country. Soil and Water Research Institute, Publication of Agriculture Education in Karaj, 394p. (In Persian)
13- Ghassemzadeh Mojaveri F. 1990. Evaluation of irrigation systems of farms. Mashhad: Astan Quds Razavi. Bhnshr company, 329p. (In Persian)
14- Goldhamer D.A., and Beede R. 1993. Result of four years of regulated deficit irrigation on deep rooted pistachio trees. CalifirniaPistachio Industry Annual Report Crop.
15- Hosseini Fard S.J., Insight M.N., Sedaghati V., and Akhiani A. 1396. Integrated management of soil fertility and plant nutrition pistachio tree. National Pistachio Research Institute. 101 p.
16- Khalili M., Haha Jaribi A., Akbar M., and Zacharyna M. 1391. Determine the moisture profile in underwater drip irrigation. Master's Thesis. Gorgan University of Agricultural Sciences and Natural Resources.
17- Kosari H. 2009. Evaluation of soil surface energy balance to estimation of evapotranspiration and its components in surface and sub-surface drip irrigation systems. Irrigation and Drainage Master's thesis, University of Tehran. (In Persian with English abstract)
18- Lamm F.R. 2016. Cotton, tomato, corn, and onion production with subsurface drip irrigation: A review. Transactions of the ASABE 59(1): 263-278.
19- Lamm F.R., and Camp C.R. 2007. Managing the Challenges of Subsurface Drip Irrigation. Elsevier Publications 473-551.
20- Li J., Zhang J., and Rao M. 2004. Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source. Journal of Agricultural Water Management 67: 89–104.
21- Mondal P., Biswas R.K., Tewari V.K., Kundu K., and Manisha B. 2007. Investigation on soil wetting patterns of low cost drip irrigation system developed in India. Trends in Applied Sciences Research 2(1): 45-51.
22- Patel N., and Rajput T.B.S. 2008. Dynamics and modeling of soil water under subsurface drip irrigated onion. Journal of Agricultural Water Management 95: 1335-1349.
23- Ragheb H.M.A., Gameh M.A., Ismail S.M., and Abou Al-Rejal N. A. 2011. Water distribution patterns of drip irrigation in sandy calcareous soil as affected by discharge rate and amount of irrigation water. J. King Abdulaziz University Meteorolical Envirnment 22(3): 141.
24- Saifi A., Mirlatifi S.M., Dehghanisanij H., and Torabi M. 1393. Effect of irrigation interval on distribution of moisture and salinity in pistachio gardens under underlying drip irrigation conditions (Case study: Sirjan city, Kerman province). Irrigation and Drainage Journal of Iran 8(4): 786-799.
25- Sayyari N., Ghahraman B., and Davari K. 2007. Investigation of soil moisture distribution under subsurface drip irrigation system in pistachio gardens (case study: Rafsanjan with saline water). Water, Soil and Plant Research in Agriculture 6: 65-77.
26- Sedaghati N., Alizadeh A., Ansari H., and Hosseinifard S.J. 2016. Study of Changes in Soil Moisture and Salinity under Plastic Mulch and Drip Irrigation in Pistachio Trees. Journal of Nuts 7 (1): 21-33.
27- Shan Y., Wang W., and Wang C. 2011. Simulated and measured soil wetting patterns for Overlap zone under double points sources of drip irrigation. African Journal of Biotechnology 10(63): 13744-13755.
28- Singh D.K., Rajput T.B.S., Sikarwar H.S., Sahoo R.N., and Ahmad T. 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Journal of Agricultural Water Management 83(1): 130-134.
29- Thorburn P.J., Cook F.J., and Bristow K.L. 2003. Soil-dependent wetting from trickle emitters: implications for system design and management. Journal of Irrigation Science 22(3): 121-127.