بررسی کیفیت آب رودخانه بهشت‌آباد با استفاده از شاخص آلودگی Liou و تحلیل مؤلفه اصلی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهرکرد

2 شهرکرد

3 دانشگاه اردکان

چکیده

رودخانه یک اکوسیستم پویا است که علاوه بر اهمیتی که در صنعت، کشاورزی و شرب دارد، تحت تأثیر فعالیت‌های مختلف قرار می‌گیرد. هدف از این مطالعه ارزیابی کیفیت آب رودخانه بهشت‌آباد واقع در استان چهارمحال و بختیاری با استفاده از شاخص آلودگی Liou و انتخاب مهم‌ترین پارامترها بر اساس تجزیه و تحلیل مؤلفه اصلی می‌باشد. در این مطالعه 7 پارامتر کیفی آب شامل دما، اکسیژن محلول، اکسیژن­خواهی بیولوژیکی، نیتروژن آمونیاکی، هدایت الکتریکی، کل مواد جامد معلق و پتانسیل هیدروژن در طول رودخانه در 7 ایستگاه انتخابی به مدت شش ماه از فروردین‌ تا شهریور سال 1395 با استفاده از روش­های استاندارد سنجش آب و فاضلاب مورد اندازه‌گیری قرار گرفتند. یافته­های حاصل از مطالعه حاضر نشان داد که کیفیت آب طی مدت پژوهش در ایستگاه‌های نمونه‌برداری و در تمامی ماه‌ها طبق شاخص آلودگی Liou در طبقه کیفیت خوب بوده ‌است. همچنین طبق تکنیک آماری تحلیل مؤلفه اصلی دو مؤلفه به‌عنوان مؤلفه اصلی معرفی شدند. نتایج تحقیق نشان داد که پارامترهای اکسیژن­خواهی بیولوژیکی، هدایت الکتریکی، کل مواد جامد معلق در بعضی از ایستگاه‌ها در محدوده استاندارد و در برخی دیگر بیش از حد استاندارد بودند. علاوه بر این نتایج مطالعه نشان داد که کیفیت آب رودخانه بهشت‌آباد در طی ماه‌های مختلف تغییرات چندانی نداشت و کیفیت آب خوب بود. این پژوهش، سودمندی و کارایی تکنیک آماری چند متغیره تحلیل مؤلفه اصلی و استفاده از شاخص­ها را به منظور مدیریت مؤثر کیفیت آب سطحی نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Water Quality Assessment of the Beheshtabad River Using Liou Pollution Index and Principal Component Analysis

نویسندگان [English]

  • R. Zamani-Ahmadmahmoodi 1
  • Ehsan Fathi 2
  • Samira Bayati 1
  • Pone Ghorbani-Dashtaki 3
1 Shahrekord University
2 Shahrekord University
3 Ardakan University
چکیده [English]

Introduction: Surface water, especially rivers, are the important sources for drinking water, agricultural and industrial uses. These reservoirs are easily affected by pollution and various activities. The vulnerability of surface water is greater than that  the groundwater. Therefore, the importance of water quality evaluation, especially for drinkable water, has increased due to the reduction in its quality and quantity in recent years. Optimal use and conservation of water resources in terms of quantity and quality are the principles of sustainable development of any country. Water quality indices are among the useful tools in water quality assessment and management. The aim of this study was to evaluate the water quality of the Beheshtabad River in Chaharmahal and Bakhtiari Province, Iran by using the Liou Pollution Index and selecting the most important parameters based on Principal Component Analysis (PCA).
Materials and Methods: In this study, 7 water quality parameters including temperature, dissolved oxygen, biological oxygen demand, ammonia nitrogen, electrical conductivity, total suspended solids, and potential hydrogen were measured by standard methods along the river in 7 selected stations for 6 months (April to September 2016). Some of these parameters were measured at the sampling site and others in the laboratory. Then, the values of the Liou Pollution Index were calculated to evaluate the water quality of the Beheshtabad River in different stations. In this study, SPSS software was used to analyze the principal component. In the next step, the appropriateness of the statistical universe was assessed using the Kaiser-Meyer-Olkin test.
Results and Discussion: The results of this study showed that the water quality was good during the study period at sampling stations, according to the Liou Pollution Index. The value of Liou Pollution Index was in the slightly polluted class in March in station 4. Then, the average of Liou Pollution Index in the Beheshtabad River was compared to different rivers. The result showed that the average of Liou Pollution Index in the studied river is higher than rivers outside Iran. In addition, according to the statistical technique of PCA, two components were introduced as the main component. The first component expressed 57.26% of the total variance and included dissolved oxygen, ammonia nitrogen, biological oxygen demand, electrical conductivity, total suspended solids and potential hydrogen parameters. The second component, temperature, expressed 21.3% of the total variance. Furthermore, the result of comparing the measured quality parameters with the standard value of surface water showed that biological oxygen demand, electrical conductivity, and total suspended solids parameters in some stations were within the standard range and in some others were higher, which indicated a negative result. The best and worst water quality in terms of biological oxygen demand was observed in May and June, respectively. The electrical conductivity in April and May in all stations was within the standard range. However, electrical conductivity was higher than the standard level in June in stations 4 and 5, higher again in July and August in stations 4 to 7, and higher as well in September in stations 2 to 7. The fish farming workshops, industrial pollution and geological survey may be the reasons. The value of potential hydrogen in all of the stations was within the standard range of 6.5 to 9.5. The value of dissolved oxygen was high because of increasing rainfall and stream flows due to the snow melting.
Conclusion: The results of this study showed that the water quality in the Beheshtabad River did not change during the last 6 months (April to September 2016), and water quality was good. In addition, PCA plays an important role in prioritizing the importance of each parameter in the pollution. Therefore, PCA places more important parameters in the first component and less important parameters in the subsequent, respectively. On the other hand, the measurement of physicochemical parameters is important for the study of water quality. This research demonstrates the usefulness and efficiency of the multivariate statistical technique of PCA and the use of indicators for effective management of surface water quality. Therefore, using water resources in the future is possible, and does not endanger their management based on sustainable development.

کلیدواژه‌ها [English]

  • Chaharmahal and Bakhtiari Province
  • Physicochemical parameters of water
  • River pollution index
  • Water Resources
1- Aminpour Shiani S., Mohammadi M., Khaledian M.R., and Mirroshandel A. 2016. Water quality evaluation of Gazroudbar river using NSFWQI and Liou indices. Journal of Wetland Ecobiology 8(1): 63-74. (In Persian)
2- APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC.
3- Bahar M.M., Ohmori H., and Yamamuro M. 2008. Relationship between river water quality and land use in a small river basin running through the urbanizing area of Central Japan. Limnology 9(1): 19-26.
4- Bouza-Deano R., Ternero-Rodriguez M., and Fernandez-Espinosa A.J. 2008. Trend study and assessment of surface water quality in the Ebro River (Spain). Journal of Hydrology 361(3): 227-239.
5- Boyd C.E., and Gautier D. 2000. Effluent composition and water quality standards. Advocate 3: 61-66.
6- Camdevyren H., Demyr N., Kanik A., and Keskyn S. 2005. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling 181: 581-589.
7- Effendi H. 2015. River water quality preliminary rapid assessment using pollution index. Procedia Environmental Sciences 33: 562-567.
8- Effendi H., and Wardiatno R.Y. 2015. Water Quality Status of Ciambulawung River, Banten Province,Based on Pollution Index and NSF-WQI. Procedia Environmental Sciences 24: 228-237.
9- Environmental Protection Agency (EPA). 1996. Quality Criteria for Waters, Washington, DC.
10- Fan X., Cui B., Zhao H., Zhang Z., and Zhang H. 2010. Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences 2: 1220-1234.
11- Fathi E., Zamani-ahmadmahmoodi R., and Zare Bidaki R. 2018. Water quality assessment of Beheshtabad River at the intersection of Shalamzar Spring with Koohrang River. Journal of Environment and Water Engineering 4(2): 178-183. (In Persian with English abstract)
12- Gayoor H., and Montazarei M. 2005. Classification of temperature regime of Iran using PCA and CA. Geography and Development Iranian Journal 2(4): 21-34. (In Persian)
13- Hoseinzadeh E., Khorsandi H., Rahimi N., Hoseinzadeh S., and Alipour M. 2013. Evaluation of Aydughmush water quality by national sanitation foundation oundation water quality (NSFWQI) and Liou pollution indices. URMIA Medical Journal 24(2): 156-162. (In Persian with English abstract)
14- Jang C.S. 2016. Using probability-based spatial estimation of the river pollution index to assess urban water recreational quality in the Tamsui River watershed. Environmental Monitoring and Assessment 188(1): 36.
15- Kelly T.R., Herida J., and Mothes J. 1998. Sampling of the Mackinaw River in central Illinois for physicochemical and bacterial indicators of pollution. Trans Ill State AcadSci 91: 145-154.
16- Lausch A., and Herzog F. 2002. Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators 2(1-2): 3-15.
17- Liou S.M., Lo S.L., and Hu C.Y. 2003. Application of two-stage fuzzy set theory to river quality evaluation in Taiwan. Water Research 37(6): 1406-1416.
18- Mohamed I., Othman F., Ibrahim A.I, AlaaEdin M.E., and Yunus R. 2015. Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia. Environmental Monitoring and Assessment 187(1): 1-12.
19- Nazemosadat S.M.J., Baigi B., and Amin S. 2003. Application of the principal component analysis for the regionalization of winter precipitation over Boushehr, Fars and Kohgiloye and Boyerahmad provinces. Journal of Water and Soil Science 7(1): 61-72. (In Persian)
20- Noori R., Abdoli M.A., Jalili Ghazizade M., and Samieifard R. 2009. Comparison of neural network and principal component-regression analysis to predict the solid waste generation in Tehran. Iranian Journal of Public Health 38(1): 74-84.
21- Noori R., Khakpour A., Omidvar B., and Farokhnia A. 2010. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications 37(8): 5856-5862.
22- Nosrati K., Derafshi K.H, Gharechahi S., and Rahimi K.H. 2011. Assessment of surface water quality of Haraz-Gharesou watershed using with multivariate techniques. Journal of Earth Science Researches 2(5): 41-55. (In Persian)
23- Oram B. 2011. Calculating NSF Water Quality Index (WQI). Wilkes University Center for Environmental Quality Geo Environmental Sciences and Engineering Department.
24- Ouyang Y. 2005. Evaluation of river water quality monitoring stations by principal component analysis. Water Research 39(12): 2621-2635.
25- Papatheodorou G., Demopouloua G., and Lambrakis N. 2006. A long-term study of temporal hydro chemical data in a shallow lake using multivariate statistical techniques. Ecological Modeling 193: 759-776.
26- Pasha Zanoosi H. 2014. Practical Statistics for Environmental and Biological Scientists John Townend. Jahad Daneshgahi Publisher, Mazandaran Branch, Iran.
27- Riitters K.H., Oneill R.V., Hunsaker C.T., Wickham J.D., Yankee D.H., Timmins S.P., Jones K.B., and Jackson B.L. 1995. A factor analysis of landscape pattern and structure metrics. Landscape Ecology 10(1): 23-39.
28- Sabahi H., Faizi M., Veisi H., and Asilan K.S. 2010. Study on the influence of agricultural activities on water quality of Sikan. Environmental Sciences 7(4): 23-30. (In Persian with English abstract)
29- Samantray P., Mishra B.K., Panda C.R., and Rout S.P. 2009. Assessment of water quality index in Mahanadiand Atharabanki Rivers and Taldanda Canal in Paradip area, India. Journal of Human Ecology 26(3): 153-161.
30- Sanchez E., Colmenarejo M.F., Vicente J., Rubio A., Garcia M.G., Travieso L., and Borja R. 2007. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators 7(2): 315-328.
31- Seifi A., Mirlatifi S.M., and Riahi H. 2011. Developing a combined model of multiple linear regression- principal component and factor analysis (MLR-PCA) for estimation. Journal of Water and Soil 24(6): 1186-1196. (In Persian with English abstract)
32- Shamsaie A., Oreei S., and Sarang A. 2004. The comparison of water indices and zoning quality in Karoon and Dez rivers. Journal of Water and Wastewater 16(3): 39-48. (In Persian)
33- Sheykhestani N. 2001. Explanation of surface water quality indices, and their applications in evaluation of quality vulnerability and interpolation of rivers. MSc Thesis in Environmental engineering. Iran University of Science Technology. (In Persian).
34- Shih C.H., Chu T.J., Kuo Y.Y., Lee Y.C., Tzeng T.D., and Chang W.T. 2010. Environmental pre-evaluation for eco-leisure: A case study of a restored stream system in Hofanchuken creek of Taipei county,Taiwan. Journal Environment Engineering Management 20(2): 99-108.
35- Terrado M., Barcelo D., Tauler R., Borrell E., and Campos S.D. 2010. Surface-water-quality indices for the analysis of data generated by automated sampling networks. TrAC Trends in Analytical Chemistry 29(1): 40-52.
36- Yidana S.M., Ophori D., and Banoeng-Yakubo B. 2008. A multivariate statistical analysis of surface water chemistry data-The Ankobra Basin, Ghana. Journal of Environmental Management 86: 80-87.