ارزیابی فنی و هیدرولیکی آبیاری قطره‌ای زیرسطحی و بررسی تأثیر کارآیی این سامانه بر صفات رشدی درختان زیتون تحت مدیریت زارعین

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مربی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

2 کارشناس ارشد بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

3 دانشیار، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

پژوهش حاضر به منظور ارزیابی عملکرد سامانه آبیاری قطره‌ای زیرسطحی و تأثیر کارآیی آن بر پارامترهای رشد درختان زیتون در استان اصفهان طی سال‌های 1390 تا 1392، تحت مدیریت زارع انجام شد. بدین منظور از سامانه یادشده یک لوله نیمه‌اصلی به طور تصادفی انتخاب و 4 لوله فرعی واقع در ابتدا، یک سوم از ابتدا، دو سوم از ابتدا و انتهای آن در نظر گرفته شد. عملکرد سامانه بر اساس پارامترهای پایه میانگین دبی قطره‌چکان (qavg)، ضریب یکنواختی کریستیانسن (CU)، یکنواختی پخش (EU) و ضریب تغییرات دبی قطره‌چکان (CV) در کل لوله فرعی (108 قطره‌چکان) ارزیابی شد. نتابج نشان داد در هر کدام از لوله‌های فرعی، حدود 6 تا 10 درصد از قطره‌چکان‌ها به دلیل وارد شدن ریشه گیاهان توت و گل‌محمدی که بعضی از آن‌ها در بین درختان زیتون کاشته شده بودند، مسدود شده و شاخص‌های یادشده در دو حالت ( وجود و عدم‌ وجود قطره‌چکان مسدود) محاسبه شد. با در نظر گرفتن قطره‌چکان‌های مسدود، میانگین مقادیر سه ‌ساله شاخص‌های qavg، CU ، EU و CV به ترتیب برابر با 8/3 لیتر در ساعت، 78، 72 و 4/16 درصد و در حالت بدون قطره‌چکان‌های مسدود برابر با 4 لیتر در ساعت، 5/82، 5/75 و 15 درصد بود و این مقادیر در حالت دوم با توجه به طبقه‌بندی ASAE قابل‌قبول است. نتایج اندازه‌گیری سه‌ساله صفات فیزیکی درخت نشان داد در سال سوم میانگین ارتفاع، قطر تنه، محیط سایه‌انداز و سطح سایه‌انداز درختان به‌ترتیب 34، 57، 5/24 و 54 درصد بیشتر از سال اول بود که بیانگر روند افزایشی رشد رویشی درختان زیتون تحت سامانه آبیاری قطره‌ای زیرسطحی است.

کلیدواژه‌ها


عنوان مقاله [English]

Technical Evaluation of Subsurface Drip Irrigation System Hydraulic and Influence of Its Efficiency on Olive Growth Parameters under Field Conditions (Case Study: Isfahan)

نویسندگان [English]

  • M. Farzamnia 1
  • M. Miranzadeh 2
  • H. Dehghanisanij 3
1 - Instructor, Agricultural Engineering Research Department, Isfahan Agricultural and Natural resources Research and Education Center, (AREEO), Isfahan, Iran
2 Master of Science, Agricultural Engineering Research Department - Isfahan Agricultural and Natural resources Research and Education Center, (AREEO), Isfahan, Iran
3 Associate Professor, Agricultural Engineering Research Institute, Agricultural Research Education, and Extension Organization, Karaj, Iran
چکیده [English]

Introduction: Subsurface drip irrigation is one of the sub-surface irrigation methods which, despite its high costs, has become increasingly important today. The water distribution pattern is not visible in this system. However, a survey on water distribution model allows it to achieve the expected pattern with the design and operation management predicted. However, the mismatch of water distribution with a subsurface drip irrigation system may be due to many factors such as pressure changes, changes in emitter production, emission sensitivity to clogging, temperature effects and others cases are relevant, but hydraulic properties are the most important. Evaluation of a drip irrigation system under field conditions is important in order to ensure uniform distribution of droplets and to prevent them from clogging and uniformity of growth in the field.  It can also be effective in optimizing water use.
Materials and Methods: A study was conducted to evaluate the performance of the subsurface drip irrigation and its effect on the growth parameters of olive trees in Isfahan province during 2010-2013. Therefore a manifold system was randomly selected from the irrigation system and four emitter laterals were located along it; one near the inlet, two near the third points, three near the two- thirds points and the fourth near the outer end. Every year, the selected lateral pipes were uncovered and the water flow rates of all the emitters (108 emitters) were measured to calculate average emitter discharge (qavg), Christiansen uniformity coefficient (CU), emission uniformity (EU), manufacturer’s variation coefficient (CV). To calculate the volume of water consumed, potential evapotranspiration (ETo) was determined using daily meteorological data and by the FAO Penman-Monteith method. Then, using olive crop coefficient (Kc) at different growth seasons for Isfahan region, the amount of irrigation water was calculated based on plant water requirement. To measure the performance of garden trees, In addition to 16 trees mentioned above, 32 other trees were selected from the other two semi-main tubes and their yield was measured (48 trees in total). Soil sampling was carried out to study the moisture distribution in the irrigation system at three points, beginning, middle and end of a sub-tube, 36 hours after irrigation, and the samples were transferred to the laboratory to calculate soil moisture content.
The results of emitter flow rate measurements indicated that approximately 6 to 10% of the emitters in every lateral were clogged. The reason for this was the rooting of the mulberry trees and rose shrubs, which were planted sporadically among the olive trees. Hence, the foregoing indices were calculated for two conditions; with and without the clogged emitters.
Results and Discussion: Considering the clogged emitters, the average values of three years of Qavg, CU, EU, and CV indices were 3.8 Lit/ h, 78, 72 and 16.4 % respectively, and in the case of clogged emitters were equal to 4 Lit/ h, 82.5, 75.5 and 15% respectively, and according to ASAE classification, the latter measurements (i.e. excluding the clogged emitters) were evaluated as “acceptable. The moisture distribution profiles indicate that the soil moisture has lasted to a depth of approximately 90 cm, and a higher accumulation of moisture was observed  at a lower depth due to the lighter soil texture in the upper layer (up to a depth of 60 cm) compared to the lower layer (8% clay versus 21% clay). Also changes in moisture to a distance of about 70 cm from the lateral in different depths is almost the same (the lines with the same moisture are parallel to each other), but from this point on, moisture decreases. The effect of moisture radius was observed to a distance of 60 to 70 cm of the emitter. The results related to growth parameters indicated that in contrast to the data of the first year, the average height, trunk diameter, canopy perimeter and area for the third year were 34, 57, 24.5, and 54% larger, respectively. In the present study, the percentage of increase in height and diameter of the tree in the seventh year of growth was 17% and 22%, respectively.
Conclusion: It is concluded that the olive trees have shown an increasing trend in vegetative growth under the subsurface drip irrigation system. The average efficiency of olive water consumption during the three years of the experiment was estimated at 0.4 kg/m3. Given that the trees were young this amount can increase under good management conditions in the coming years. The evaluation indicators showed that the observed defects in the design resulted from the three main factors of the design, implementation and incorrect use of the system.

کلیدواژه‌ها [English]

  • Emitter clogging
  • Field evaluation
  • Subsurface drip irrigation system
  • Water applied
  • Water distribution
  • Water uniformity coefficient
1- Acar B., Topak R., and Direk M. 2010. Impacts of pressurized irrigation technologies on efficient water resources uses in semi-arid climate of konya basin of Turkey. International Journal of Sustainable Water and Environmental Systems 1(1):1-4.
2- Albasha R., Dejean C., Mailhol J.C., Weber J., Weber J., Bollègue C., and Lopez J.M. 2015. Performances of subsurface drip irrigation for maize under mediterranean and temperate oceanic climate conditions. 26th Euro-mediterranean Regional Conference and Workshops. 12-15 October 2015, Montpellier, France.
3- Al-Ghobari HM. 2007. Field evaluation of drip irrigation systems in Saudi Arabia, Pp.500-510. In: Water Resources Management IV, Brebbia CA, Wessex Institute of Technology, UK and AG Kungolos, University of Thessaly, Greece.
4- Alizadeh A. 1997. The principles and operation of drip irrigation, Imam Reza University, Mashhad, p. 450. (In Persian)
5- Al-jamal M.S., Ball S., and Sammis T.W. 2001. Comparison of Sprinkler, trickle and furrow irrigation efficiencies for onion production. Journal of Agricultural Water Management 46(3): 253-266.
6- Allen R.G., PereiraL.S., Raes D., and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irriggation and Drainage. No, 56. FAO, Rome, 300.
7- Anonymous. 2014. Nutritional recommendations for olive. Retrieved January 16, 2014.
8- ASAE EP-458. 1990. Field evaluation of micro irrigation systems. American Society of Association Executivesstandard. 126 p.
9- ASAE standards, 43rd ed. 1996. EP458. Field Evaluation of Microirrigation Systems. St. Joseph, Mich. American Society of Association Executives: 756-761.
10- ASAE. 1985: Design, Installation and Performance of Trickle Irrigation Systems. Agricultural Engineers Yearbook, Standards of ASAE, American Society of Agricultural Engineers, St. Joseph, 519-522.
11- Badr M.A., Hussein S.A., El-Tohamy W.A., and Gruda N. 2010. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanzen 62(2): 63-70.
12- Bagheri R., Hesam M., Kiani A., and Hezarjaribi A. 2014. Determination of Efficiency of Subsurface Drip Irrigation System (Case Study: Peach and Citrus Gardens in Kordkuyeh County). Iranian Journal of Water Research 10(1): 69-76. (In Persian)
13- Bagheri R., Hesam M., Kiani A., and Hezarjaribi A. 2014. Technical Evaluation of the Hydraulic Performance of Subsurface Drip Irrigation system. Iranian Journal of Irrigation and Drainage, 8 (2): 413-422. (in Persian)
14- Camp C.R., Sadler E.J., and Busscher W.J. 1997. A comparison of uniformity measure for drip irrigation systems. Transactions of the American Society of Association Executives 40: 1013- 1020.
15- Christiansen J.E. 1942. Standards. 43rd Ed. American Society. Of Agricultural and Biological Engineers. St. Joseph, MI 864 pp.
16- Ebrahimi H. 2006. Sis and Evaluation of Simplified Irrigation Systems in Khorasan. Journal oF Agricultural Sciences 12(3): 577-589. (In Persian)
17- Ebrahimpour M. 2011 Technical evaluation and evaluation of drip irrigation systems implemented in Kurdistan province. Master thesis, Faculty of Agriculture, Kurdistan University. 150 p. (In Persian)
18- Enciso J., Jifon J., Anciso J., and Ribera L. 2015. Productivity of onions using subsurface drip irrigation versus furrow irrigation systems with an internet based irrigation scheduling program. International Journal of Agronomy 3: 1-6.
19- Esmail G.E., Merwad M.A., Mostafa E.A., and Saleh M.M. 2016. The beneficial effect of subsurface drip irrigation system on yield, fruit quality and leaf mineral content of Valencia orange trees. International Journal of ChemTech Research 9(8):70-76.
20- Faci JM., Berenguer MJ., Espada JL., and Gracia S. 2002. Effect of variable water irrigation supply in olive (Olea europaea L.) cv. Arbequina in Aragon (Spain). II. Extra Virgin oil quality parameters. Journal of Acta Horticultural 586: 649-652.
21- Fadi K. 2011. Program for the Development and Dissemination of Sustainable Irrigation Management in Olive Growing (IRRIGAOLIVO) (CFC/IOOC/06), Annual Report (January-December 2011), ICARDA.
22- Farshi A.A., Shariati M.H., Jarollahi R., Ghaemi M.H., Shabifar M., and Tolaei MM. 1997. Estimated water requirement major plants agricultural and horticultural of country. Soil and Water Research Institute, Publication of Agriculture Education in Karaj, 394p. (in Persian)
23- Fernandez J.R. 2006. Irrigation management in olive. In: Proceedings of the 2nd International Seminar Olive Bioteq., 5- 10 November 2006. Marsala- Mazara dell Vallo. Italy, seminars and invited lectures, 295- 305.
24- Keller J., and Karmeli D. 1974. Trickle irrigation design parameters. Transaction of the ASAE 17(4): 678-684.
25- Kouhi N., and DehghaniSanij H. 2012. Evaluation of exploitation management in implemented systems of subsurface irrigation in pistachio gardens in Kerman province. Proceedings of the Fourth National Seminar on Sustainable Development of Pressure Irrigation Methods. Karaj Agricultural Engineering Research Institute. Oct. 5, p 1351. (In Persian)
26- Lamm F.R. 2016. Cotton, tomato, corn, and onion production with subsurface drip irrigation: A review. Transactions of the American Society of Agricultural and Biological Engineers 59(1):263-278.
27- NaanDanJain Irrigation (C.S.) Ltd. 2010. Low-Volume Irrigation of Olive Orchards. Post Naan 76829, Israel.
28- Nagaz K., Masmoudi M.M., and Mechlia N.B. 2012. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia. Journal of Agriculture and Environment for International Development (JAEID) 106(2): 85-103.
29- Noshadi M., and Ghaemi A.A. 2013. Technical and Hydraulic Investigation of Drip Irrigation Systems in Fars Province. Iranian Journal of lrrigation and Drainage 6(4): 254-26. (In Persian)
30- Nuberg IK and Yunusa I. 2003. Olive water use and yield: monitoring the relationship. RIRDC Publication No.03/048 September 2003. 46p.
31- Ortega J.F., Tarjuelo J.M., and De-Juan J.A. 2002. Evaluation of irrigation performance in localized irrigation systems of semi-arid regions (Castilla-La Mancha, Spain).
32- Palacios-Diaz M.P., Mendoza-Grimon V., Fernandez-Vera J.R., Rodriguez-Rodriguez F., Tejedor-Junco M.T., and Hernandez-Moreno J.M. 2009. Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Journal of Agricultural Water Management 96(11): 1659-1666.
33- Sakthivadivel R., de Fraiture C., Molden DJ., Perry C., and Kloezen W. 1999 Indicators of land and water productivity in irrigated agriculture. International Journal of Water Resources Development 15: 161-179.
34- Shaker1 M., Hesam M., Kiani A.R., and Zakeri Nia M. 2014. Technical evaluation of implemented drip irrigation systems in the gardens of Golestan Province. Journal of Water and Soil Conservation,21(4): 261-274. (In Persian)
35- Umara B. G., Audu I., and Basher A. U. 2011. Performance evaluation of bamboo (Oxytenanthera abyssinica ) low-cost microirrigation lateral system. Arpan Journal of Engineering and Applied Sciences 6(5): 69-73.
36- Zamanian M., Fattahi R., Boroumand Nasab D., Shamommadi Sh., and Parak K. 2012. Evaluation of irrigation micro-system performance in different climate conditions of Iran. Proceedings of the Fourth National Seminar on Sustainable Development of Pressure Irrigation Methods. Karaj Agricultural Engineering Research Institute. Oct. 5, p 1351. (In Persian)
CAPTCHA Image
دوره 33، شماره 4 - شماره پیاپی 66
مهر و آبان 1398
صفحه 549-564
  • تاریخ دریافت: 30 اردیبهشت 1398
  • تاریخ بازنگری: 11 شهریور 1398
  • تاریخ پذیرش: 13 شهریور 1398
  • تاریخ اولین انتشار: 01 آبان 1398