پیامد کاربرد قارچ مایکوریزا بر برخی ویژگی‌های بیوشیمیایی ارقام گندم در خاک آلوده به سرب

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد کرج

2 دانشکده کشاورزی کرج

3 مؤسسه تحقیقاتی آب و خاک کرج

چکیده

افزایش آلودگی خاک با فلزات سنگین یکی از مهم‌ترین موضوعات در سراسر جهان به شمار می‌رود که امروزه در کانون توجهات قرار گرفته است. سرب به‌عنوان یکی از خطرناک‌ترین فلزات سنگین و آلاینده‌های شیمیایی پایدار، بر محیط‌زیست به‌خصوص فعالیت‌های متابولیکی و فیزیولوژیکی موجودات زنده تأثیر می‌گذارد و در نهایت به‌سلامت محیط‌زیست و انسان آسیب‌های جدی وارد می‌کند. پژوهش حاضر با هدف بررسی اثر کاربرد و عدم کاربرد قارچ مایکوریزا (Rhizophagus irregularis) بر میزان فعالیت برخی خصوصیات بیوشیمیایی 10 ژنوتیپ گندم در سه غلظت مختلف سرب (0، 218 و 437 میلی­گرم بر کیلوگرم) در خاک انجام گردید. با افزایش غلظت سرب، میزان مالون دی آلدهید نیز افزایش یافت که در نتیجه‌ی تخریب سلول‌های گیاهی می‌باشد. مقادیر پرولین رقم پارس در هر دو تیمار عدم کاربرد و کاربرد قارچ مایکوریزا در غلظت 218 میلی‌گرم بر کیلوگرم سرب و نیز رقم سیروان در تیمار عدم کاربرد قارچ و غلظت 218 میلی­گرم بر کیلوگرم سرب به ترتیب در بالاترین مقدار قرار داشت. فعالیت کاتالاز رقم بهار در تیمار عدم کاربرد قارچ با غلظت 218 میلی­گرم بر کیلوگرم سرب در بیشترین سطح بود. رقم روشن در غلظت 218 میلی­گرم بر کیلوگرم دارای فعالیت آنزیم آسکوربات پراکسیداز بالایی بود. پس ‌از این رقم، ارقام بک کراس روشن و پیشتاز در همین غلظت میزان بیش‌تری از فعالیت این آنزیم را به خود اختصاص دادند. مقدار پراکسید هیدروژن با تغییر غلظت سرب از 0 به 218 میلی­گرم بر کیلوگرم کاهش نشان داد، درحالی‌که در غلظت 437 میلی­گرم بر کیلوگرم مقدار آن افزایش داشت. با افزایش غلظت سرب میزان کلروفیل a کاهش و میزان کلروفیل b افزایش یافت. کاربرد قارچ مایکوریزا بر آنزیم‌های مالون دی آلدئید، پرولین، کاتالاز و پراکسید هیدروژن تأثیرگذار بود و سبب کاهش مقدار این آنزیم‌ها در مقایسه با شاهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Mycorrhizal Fungus Application on Some Biochemical Characters of Wheat Cultivars in Lead Contaminated Soil

نویسندگان [English]

  • K. Kiani Jam 1
  • M.R. Bihamta 2
  • D. Habibi 1
  • A. Asgharzadeh 3
  • A. Saremirad 1
1 Karaj
2 Karaj
3 Karaj
چکیده [English]

Introduction: Nowadays, increasing soil contamination by heavy metals is one of the most important issues around the world, and is the focus of attention. Lead as the most dangerous heavy metal and persistent chemical pollutant affects the environment, especially the metabolic and physiological activities of organisms and ultimately cause serious damage to the environment and human health. The purpose of this study was to investigate the effect of mycorrhizal fungus (Rhizophagus irregularis) on some biochemical traits of 10 wheat genotypes in three different concentrations of lead heavy metal (0, 218 and 437 ppm) in soil.
Material and Methods: The present study was conducted as factorial experiment based on randomized complete block design with three replications. The factors included lead in three concentrations (0, 218 and 437 mg / kg), mycorrhizal inoculum (addition and no addition), and 10 wheat genotypes (Shiraz, Sepahan, Sirvan, Back Cross Roshan, Marvdasht, Sivand, Bahar, Pars, Roshan, and Pishtaz). Soil samples were prepared from a depth of 0-25 cm of the research farm of Islamic Azad University, Karaj Branch. Samples were taken randomly. After soil drying and passing through a 2 mm sieve, they were transferred to the soil science laboratory to determine some of the physical and chemical properties. According to the soil test results, the soil was sandy loam, a semi-light soil with 25% clay, 25% silt and 50% sand, with pH = 7.49 and salinity of 1.63 dS. m-1, and also free of heavy metals. The soil was sterilized for four hours by an autoclave at the temperature of 121 °C and a pressure of 1.5 atm. After soil preparation, the lead was added to the soil at three concentrations of 0, 218 and 437 ppm, and stored in a pre-embedded bag with 60% moisture content to achieve a two-week equilibrium. In order to inoculate the mycorrhizal fungus, after removal of 3-4 cm from the soil surface, Rhizophagus irregularis (35 g) was added to the soil surface, then 30 to 40 seeds were placed on the soil surface and covered with soil. In the control samples without mycorrhizal fungus, a certain amount of mycorrhizal fungus placed at 105 ºC to kill the fungus and then added to the pots.
Results and Discussion: Malondialdehyde concentration increased by increasing the concentration of lead. The highest concentrations of proline were belonged to the level 218 ppm of lead, in Pars cultivar in both treatments of with and without mycorrhiza fungus as well as Sirvan cultivar in the treatment of without fungi, respectively. The activity of Catalase was highest in the treatment of 218 ppm of lead without fungus. Roshan cultivar also showed high levels of ascorbate peroxidase activity in 218 ppm of lead. Similar to cultivar, BC Roshan and Pishtaz cultivars also showed high ascorbate peroxidase activity in this concentration of lead. The amount of hydrogen peroxide was reduced by changing the concentration of lead from 0 to 218 ppm, while its amount increased at 437 ppm concentration. With increasing lead concentration, the amount of chlorophyll a decreased while chlorophyll b increased. Using mycorrhizal fungus, the amount of malondialdehyde, proline and hydrogen peroxide and catalase content decreased compared with control. It seems that lead, due to its concentration in the environment, leads to the induction of oxidative stress and the formation of free radicals and thus change in the amount of biochemical traits of wheat such as malondialdehyde, proline, hydrogen peroxide and chlorophyll a and b and activity of catalase and ascorbate peroxidase. The genotype of the plant is very important factor in tolerating the toxicity of lead, and it deals with various protective mechanisms. Not only the plant genotype but also environmental factors such as the use of mycorrhizal fungus are effective in reducing the harmful effects of lead, and helps plants tolerate the stress caused by lead toxicity.
Conclusion: Lead in the soil causes changes in the biochemical content of wheat cultivars. The amount of change depends on the plant's genotype, lead concentration, and other factors in the soil, such as symbiotic fungi. As shown in the present study, mycorrhizal fungus was effective in eliminating the negative effects of lead during symbiotic with wheat. It is suggested further studies to determine the concentration of lead and even other heavy metals in wheat genotypes and to compare with Iranian national standards in order to overcome the concerns about the entry of these metals into the diet.
 

کلیدواژه‌ها [English]

  • Ascorbate peroxidase
  • Catalase
  • Proline
  • Cell
  • Chemical pollutant
  • Peroxidase
1- Adriano D.C. 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. New York: Springer-Verlag.
2- Ahmad P., Hakeem K.R., Kumar A., Ashraf M., and Akram N.A. 2012. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology 11(11): 2694-2703.
3- Alloway B.J. 1995. Soil Processes and the Behaviour of Heavy Metals. p. 11-37. In: B. J. Alloway (ed) Heavy Metals in Soils. Blackie Academic and Professional, London.
4- Andrade S.A.L., Gratao P.L., Schiavinato M.A., Silveira A.P.D., Azevedo R.A., and Mazzafera P. 2009. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75: 1363-1370.
5- Arnon D. 1949. Estimation of Total chlorophyll. Plant Physiology 24(1): 1-15.
6- Asrar A.A., Abdel-Fattah G.M., and Elhindi K.M. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2): 305-316.
7- Baker A.J.M., Mc-Grath S.P., Reeves R.D., and Smith J.A.C. 2001. Metal hyper accumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water (eds. Terry N., and Banuelos G.). CRC Press, Boca Raton, Florida, USA; 2000; 85-107.in Zea mays roots. Journal of Plant Nutrition 24(7): 1085-1097.
8- Bates L., Waldren R., and Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant and soil 39: 205-207.
9- Bhargava A., Carmona F.F., Bhargava M., and Srivastava S. 2012. Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management 105: 103-120.
10- Biro I., and Takacs T. 2007. Effects of Glomus mossea strains of different origin on plant macro and micronutrient uptake in Cd polluted and unpolluted soils. Acta Agronomica Hungarica 55(2): 1-10.
11- Bonifacio A., Martins M.O., Ribeiro C.W., Fontenele A.V., Carvalho F.E., Margis-Pinheiro M., and Silveira J.A. 2011. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environment 34: 1705-1722.
12- Borde M., Dudhane M., and Jite P. 2012. Growth, water use efficiency and antioxidant defense responses of mycorrhizal and non-mycorrhizal Allium sativum L. under drought stress condition. Annals of Plant Science 1: 6-11.
13- Chance B., and Maehly A. 1955. Assay of catalases and peroxidases. Methods in enzymology 2: 764-775.
14- Chehreganirad A., Farzan S., and Shirkhani Z. 2017. Effect of lead treatment on some morphological and physiological parameters of Petunia hybrida L. Journal of Plant Researches 30(1): 226-243.
15- Chin L. 2007. Investigations into Lead (Pb) Accumulation in Symphytum officinale L. A Phytoremediation Study 6(10): 1182-1192.
16- Dey U., and Mondal N.K. 2016. Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environmental Science 2: 1196472. http://dx.doi.org/10.1080/23311843.2016.1196472
17- Ekmekyapar F., Sabudak T., and Seren G. 2012. Assessment of heavy metal contamination in soil and wheat (Triticum Aestivum L.) plant around the Çorlu Çerkezkoy highway in Thrace region. Global NEST Journal 14(4): 496-504.
18- Facchinelli A., Sacchi E., and Mallen L. 2001. Multivariate statistical and gis-based approach to identify heavy metal sources in soils. Environmental Pollution 114(3): 313-324.
19- Gajewska E., and Skłodowska M. 2008. Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regulation 54(2): 179-188.
20- Gill S.S., and Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress in crop plants. Plant Physiology and Biochemistry 48(12): 909-930.
21- Gupta D.K., Huang H.G., Yang X.E., Razafindrabe B.H.N., and Inouhe M. 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials 177437-177444.
22- Gupta D.K., Nicoloso F.T., Schetinger M.R.C., Rossato L.V., Pereira L.B., and Castro G.Y. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials 172: 479-484.
23- Hadi F., Bano A., and Fuller M.P. 2010. The improved phytoextraction of lead (Pb2+) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80: 457-462.
24- Hajiboland R. 2007. Uptake, transport and tolerance to Mn and Cu in some species from flora of Iran. Iranian Journal of Biology 2: 174-190. (In Persian with English Abstract)
25- Heath R.L., and Packer L. 1968. Phyto Peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125(1): 189-198.
26- Kabata-Pendias A. 2004. Soil-Plant transfer of trace elements-an environmental issue. Geoderma 122:143-149.
27- Kabata-Pendias A. 2011. Trace elements in soils and plants. CRC Press Taylor & Francis Group, 534.
28- Kanwal S., Bano A., and Malik R.N. 2016. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. African Journal of Biotechnology 15(20): 872-883.
29- Kavi Kishor P.B., Sangam S., Amruth R.N., Sri-Laxmi P., Naidu K.R., Rao K., Sreenath R., Reddy K.J., Theriappan P., and Sreenivasulu N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science 88: 424-438.
30- Khalighi Jamal-Abad A., and Khara J. 2008. The effect of arbuscular mycorrhizal fungus Glomus intraradices on some growth and physiological parameters in wheat (cv. Azar 2) plants under cadmium toxicity. Iranian Journal of Biology 21(5): 1-15. (In Persian with English Abstract)
31- Khan A.G. 2006. Mycorrhizoremediation- an enhanced form of phytoremediation. Journal of Zhejiang University Science B 7: 503-514.
32- Khan A., Sharif M., Ali A., Shah S.N.M., Mian I.A., Wahid F., Jan B., Adnan M., Nawaz S., and Ali N. 2014. Potential of AM Fungi in Phytoremediation of Heavy Metals and Effect on Yield of Wheat Crop. American Journal of Plant Sciences 5: 1578-1586.
33- Lari Yazdi H., Ghorbanli M., Mirzaei M., and Hashemi A.R. 2011. Investigating the effects of different concentrations of lead on proline, soluble sugars, starch and antioxidant activity of catalase and peroxidase in Triticum aestivum L. wheat. Pishtaz cultivar, the first national conference on topics Modern Agriculture, Saveh, Islamic Azad University Saveh Branch.
34- Li N., Kang Y., Pan W., Zeng L., Zhang Q., and Luo J. 2015. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of Total Environment 521-522: 144-151.
35- Mahdavian K., Ghaderian M., and Torkzade-Mahani M. 2016. The effect of different concentrations of lead on some physiological parameters in two populations of Harmal (Peganum harmala L.). Journal of Cell & Tissue 6(4): 543-555. (In Persian with English Abstract)
36- Malecka A., Piechalak A., Mensinger A., Hanc D., Baralkiewicz D., and Tomaszewska B. 2012. Antioxidative Defense System in Pisum sativum Roots Exposed to Heavy Metals (Pb, Cu, Cd, Zn). Polish Journal of Environmental Studies 21(6): 1721-1730.
37- Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal Stress. Polish Journal of Environmental Studies 15: 523-530.
38- Mico C., Recatala L., Peris M., and Sanchez J. 2006. Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariate analysis. Chemosphere 65: 863-872.
39- Nakano Y., and Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiology 22: 867-880.
40- Parizanganeh A.H., Bijnavand V., Zamani A.A., and Hajabolfath A. 2012. Concentration, Distribution and Comparison of Total and Bioavailable Heavy Metals in Top Soils of Bonab District in Zanjan Province. Open Journal of Soil Science, 2: 123-132.
41- Pourcel L., Routaboul J., Cheynier V., Lepiniec L., and Debeaujon I. 2006. Flavonoid oxidation in plants: from biochemical properties to physiological functions. TRENDS in Plant Science 12: 29-36.
42- Rafati M., Khorasani N., Moattar F., Shirvany A., Moraghebi F., and Hosseinzadeh S. 2011. Phytoremediation Potential of Populus albaand Morus albafor Cadmium, Chromuim andNickel Absorption from Polluted Soil. International Journal of Environmental Research 5(4): 961-970.
43- Roberts A.E., Boylen C.W., and Nierzwicki-Bauer S.A. 2014. Effects of lead accumulation on the Azolla caroliniana–Anabaenaassociation. Ecotoxicology and environmental safety 102: 100-110.
44- Sandhya V., Ali S.Z., Grover M., Reddy G., and Venkateswarlu B. 2010. Effect of plant growth promoting Pseudomonas spp. On compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 62: 21-30.
45- Santoro A., Lioi M.B., Monfregola J., Salzano S., Barbieri R., and Ursini M.V. 2005. L-Carnitine protects mammalian cells from chromosome aberrations but not from inhibition of cell proliferation induced by hydrogen peroxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 587(1): 16-25.
46- Schaller H. 2003. The role of sterolsin plant growth and development. Progrss in Lipid Research Planta 42: 63-175.
47- Seregin I.V., and Kosevnikova A.D. 2008. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal Plant Physiology 55: 1-22.
48- Sharma P., and Dubey R.S. 2005. Lead toxicity in plants. Brazilian Journal Plant Physiology 17: 35-52.
49- Singh Gill S., and Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.
50- Singh D., Tiwari A., and Gupta R. 2012. Phytoremediation of lead from wastewater using aquatic plants. Journal of Agricultural Technology 8(1): 1-11.
51- Stockinger H., Walker C., and Schubler A. 2009. Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytologist 183(4): 1176–1187. doi:10.1111/j.1469-8137.2009.02874.x
52- Susarla S., Medina V.F., and McCutcheon S.C. 2002. Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering 18: 647-58.
53- Tewari R.K., Hadacek F., Sassmann S., and Lang I. 2013. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. Environmental and Experimental Botany 91: 74-83.
54- Vessey J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and soil 255(2): 571-586.
55- Wang J., Zeng Q., Zhu J., Liu G., and Tang H. 2013. Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agriculture Ecosystems and Environment 165: 39-49.
56- Wei B., and Yang L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Micro chemical Journal 94(2): 99-107.
57- Wojdyla A.T. 2004. Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences 69: 705-715.
58- Wu Q., and Xia R. 2004. Effects of arbuscular mycorrhizal fungi on plant growth and osmotic adjustment matter content of trifoliate orange seedlings under water stress. Journal of Plant Physiology and Molecular Biology 30: 583-588.
59- Yalcin M.G., Battaloglu R., and Ilhan S. 2007. Heavy metal sources in Sultan Marsh and its neighborhood, Kayseri, Turkey. Environmental Geology 53: 399-415.
60- Yong Z., Hao-Ru T., and Ya L. 2008. Variation in antioxidant enzyme activities of two strawberry cultivars with short term low temperature stress. Journal of Agricultural Sciences 4: 456-462.
61- Zhang H.H., Tang M., and Zheng C. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology 46: 306-311.
62- Zhang Q., Shi X.Z., Huang B., Yu D.S., Wang H.J., and Sinclair F.L. 2007. Surface water quality of factory based and vegetable based peri-urban areas in the Yangtze River Delta region. China Catena 69: 57-64.
63- Zhao Q., Wang Y., Cao Y., Chen A., Ren M., and Ge Y. 2014. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Science of the Total Environment 470-471: 340-347.