اثر توأم رژیم‌های آبیاری و کود نیتروژن بر تغییرات رطوبتی خاک و عملکرد ذرت دانه‌ای با سامانه آبیاری قطره‌ای تیپ

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مشهد

2 توتوریو ژاپن

3 دانشگاه فردوسی مشهد

4 دانشگاه بوعلی سینا همدان

چکیده

پژوهش حاضر با هدف بررسی تأثیر رژیم­های آبیاری قطره­ای و سطوح مختلف کود نیتروژن بر عملکرد و اجزای عملکرد ذرت دانه­ای (SC 704) و تغییرات رطوبت خاک در استان کرمان طی سال­های زراعی 1393-1391 انجام گردید. طرح آزمایشی به صورت کرت­های خرد شده در قالب بلوک‌های کامل تصادفی شامل سه تیمار اصلی رژیم­های آبیاری (I1=100، I2=80 و I3= 60%ETc) و پنج تیمار فرعی سطح کود نیتروژنه N1 = 0)، N2= 50، N3= 100، N4= 150 و N5= 200 کیلوگرم­بر­هکتار) اجرا شد. نتایج نشان داد که بیشترین میزان عملکرد (85/8 تن در هکتار) به تیمار I1 اختصاص یافت. کاربرد نیتروژن بیش از اندازه تأثیر منفی در عملکرد دانه ذرت داشت. مصرف بیشترکود نیتروژن موجب طولانی شدن دوره رشد رویشی، افزایش شاخ و برگ گیاه و متعاقب آن موجب افزایش عملکرد بیولوژیک گیاه می‌شود و این امر مـی­توانـد موجـب کـاهش عملکرد دانه ذرت گردد. همچنین در خاک‌هایی که کمبود نیتروژن دارند با افزودن نیتروژن عملکرد دانه ذرت افزایش می‌یابد ولی پس از رسیدن به حداکثر عملکرد افزودن نیتروژن تاثیری نداشته و باعث کاهش عملکرد می‌شود. اثرات متقابل تیمار­ها نشان داد که تیمارهای I1N4 بیشترین (6/10 تن در هکتار) و تیمار I3N1 کمترین (24/1 تن در هکتار) عملکرد دانه ذرت را داشتند. بیشترین و کمترین اجزای عملکرد ذرت به ترتیب در تیمارهای I1N4 و I3N5 مشاهده شد. بیشترین میزان کارایی مصرف آب (268/1 کیلوگرم بر متر مکعب) در تیمار I2N4 و کمترین آن (068/0 کیلوگرم بر متر مکعب) در تیمار I3N1 بدست آمد. رطوبت باقی­مانده در خاک با کاهش مقدار آب آبیاری و کود نیتروژن در 20 روز پس از کشت کاهش یافت. در 45 روز بعد از کاشت و در عمق 10-0 سانتی‌متری، رطوبت باقی­مانده در خاک برای تیمار­های I1، I2 و I3 به کمتر از نقطه پژمردگی دائم رسیدند. نتایج حاصل از این پژوهش این مهم را به ما نشان می­دهد که تحت شرایط تنش آبی، امکان دسترسی به میزان عملکرد و کارایی مصرف آب بیشتر محصول به همراه شرایط رطوبتی مساعد و مطلوب، با اعمال میزان مناسب سطوح کودی امکان­پذیر است و و تیمار I2N4 می­تواند گزینه کاربردی مناسبی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Interaction of Irrigation Regimes and Nitrogen Fertilizer on Soil Moisture Variation and Grain Yield under Tape-Drip Irrigation System

نویسندگان [English]

  • N. N. Kouhi Chelle Karan 1
  • H. Dehghanisanij 2
  • A. Alizadeh 3
  • E. Kanani 4
1 Mashhad
2 Japan
3 Ferdowsi University of Mashhad
4 Bu Ali Sina University, Hamadan
چکیده [English]

Introduction: Drought is one of the factors that threatens the performance of agricultural products, especially corn in most parts of the world. Under conditions of water scarcity, the effectiveness and efficiency of fertilizer use is reduced, especially if fertilizer application is not consistent with plant growth. Among fertilizers, nitrogen is one of the most important nutrients for corn, and consumption management of this fertilizer has great importance in order to succeed in increasing the production of corn. Therefore, in conditions of water shortage, balanced and optimal use of fertilizer should be considered to achieve increased yield and water use efficiency.
Materials and Methods: This study was conducted to investigate the effect of drip irrigation regimes and different levels of nitrogen fertilizer on yield and yield components of corn and soil moisture changes at the Shaheed Zendrh Rouh Jupar in Kerman province during the years of 2012-2014. The experiment was arranged as a split-plot design based on randomized complete block design with five irrigation regimes (I1 = 100, I2 = 80 and I3 = 60% ETc) as the main-factor and five nitrogen fertilizer level N1 = 0, N2 = 50, N3 = 100, N4 = 150 and N5 = 200 kg/ha) as sub-factor. According to the Kerman Meteorological Station, this region has a semi-arid climate with warm summers and mild winters. To calculate the volume of water consumed, potential evapotranspiration (ETo) was determined using daily meteorological information and Penman-Monteith method (PM). A sampling method was used to measure moisture at different depths of soil.
Results and Discussion: The results showed that the highest yield was due to I1 treatments with 8.85 t/ha, and there was a direct relation between crop reduction and water requirement reduction at all stages of crop production. High nitrogen application had a negative effect on yield. Typically, in soils that lack nitrogen, corn grain yield increased with nitrogen addition. However, after reaching the maximum yield, nitrogen addition has no effect on increase or yield may reduce. The interactions of different levels of water and fertilizer showed that I1N4 and I3N1 treatments had the highest (10.6 ton/ha) and lowest (1.24 ton/ha) value of corn yield, respectively. The highest and lowest grain yield components (thousand grain weight, number of kernels row, number of kernels per row, cob length, cob diameter) were observed in N1 and N3 I1 treatments, respectively. The highest water use efficiency (1.26 kg/m3) was observed in I2N4 treatment and the lowest (0.068 kg/m3) in I3N1 treatment. The results of this study showed that the remaining moisture content in soil decreased by decreasing amount of irrigation water and nitrogen fertilizer in 20 days after planting. At 75 days after planting, reasons such as severe water shortages during growth, reduced root density, high water requirement at this stage of growing season, and the plants need to nutrients have probably caused the roots to absorb as much as possible of the top three water and nutrient. As a result, the moisture that reaches the last layer is less. The results showed that in the last stages of growth compared to other stages, the plant water requirement is reduced and excess water penetrates the lower layers.
Conclusion According to the results of this study, nitrogen fertilizer at 150 kg/ha with 100% water requirement is the best combination for corn farming in semi-arid climates.

کلیدواژه‌ها [English]

  • Different fertilizer levels
  • Irrigation regime
  • Soil Moisture
  • Surface drip
1- Abolhasani K., and Saeidi G. 2004. Relationships between agronomic characteristic of safflower under water stress and control. Iranian Journal of Field Crops Research 1: 127-138. (In Persian)
2- Aghdam S.M., Yeganehpoor F., Kahrariyan B., and Shabani E. 2014. Effect of different urea levels on yield and yield components of corn 704. International Journal of Advanced Biological and Biomedical Research 2(2): 300-305.
3- Alizadeh O.P., Azari A., and Salimi M. 2009. Effects of grain yield and corn hybrids response to interaction of moisture stress and nitrogen fertilizer, First National Conference on Environmental Tensions in Agricultural Sciences. Birjand University. (In Persian)
4- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage. No, 56. FAO, Rome.
5- Babaeian M., Heidari M., and Ghanbari A. 2010. Effect of water stress and foliar micronutrient application on physiological characterstics and nutrient uptake in sunflower (Helianthus annuus L.). Iranian Journal of Crop Sciences 12(4): 311-391. (In Persian)
6- Ghobadi R., Shirkhani A., and Jalilian A. 2015. Effect of drought stress and nitrogen fertilizer on yield and water and nitrogen use efficiency of corn. (SC 704). Research and Construction Journal 106: 79-87. (In Persian)
7- Ghodsi M. 2004. Ecological aspects of water scarcity on wheat cultivars. Ph.D. thesis (agriculture, ecology of crops). University of Tehran. Faculty of Agriculture. (in Persian)
8- Hussaini M.A., Ogunlela V.B., Ramalan A.A., and Falaki A.M. 2008. Mineral composition of dry season maize (Zea mays L.) in response to varying levels of nitrogen, phosphorus and irrigation at Kadawa, Nigeria. World Journal of Agricultural Sciences 4(6): 775-780
9- Izadian M. 2016. Evaluation of Different Levels of Nitrogen Fertilizer on Agronomic Traits of Corn (Zea mays L.) Genotypes. Journal of Crop Nutrition Science 2(3): 10-18.
10- Karam F.R., Lahoud D.R., and Masaad R.Y. 2007. Evaporation, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Journal of Agricultural Water Management 90(3): 213- 235.
11- Katsvairo T.W., Cox W.J., van Es H.M., and Glos M. 2003. Spatial yield response of two corn hybrids at two nitrogen levels. Agronomy Journal 95:1012–1022.
12- Kazemi P.H., Pirdashti H.A., and Bahmaniar M.A. 2008. Investigation of nitrogen transfer in different varieties of rice (Oreza sativa L.) in different levels and distribution of nitrogen fertilizer. Electronic Journal of Crop Production 1(3): 1-16. (In Persian)
13- Kosari H. 2009. Evaluation of soil surface energy balance to estimation of evapotranspiration and its components in surface and sub-surface drip irrigation systems. Irrigation and Drainage Master's thesis, University of Tehran. (In Persian with English abstract)
14- Megyes A., RatonyiT., and Huzsvai L. 2004. The effect of fertilization and irrigation on maize (Zea mays L.) production, www.date.hu/acta-agraria. 21- Montgomery, E.C. (1911) Corelation sudies in corn. In: Annual report No. 24. Nebrasks agricultural research sation. Lincoln, NE, (108-159)
15- Mojdem M., and Modhej A. 2012. Effect of nitrogen levels on water use efficiency, yield and yield components of corn grain under optimum conditions and drought stress. Iranian Journal of Agricultural Research 10(3): 546-554. (In Persian)
16- Modhej A., Kaihani A., and Lack S. 2014. Effect of nitrogen fertilizer on grain yield and nitrogen use efficiency in corn (Zea mays L.) hybrids under irrigated conditions. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84(3): 531-536.
17- Mojed M., Naderi A., Noormohammadi G., Saydat A., Aynband A., and mousavi E. 2008. The effect of water stress, different values and methods of nitrogen distribution on corn grain yield and nitrogen efficiency. Iranian Journal of Agricultural Sciences 39(1): 97-106. (In Persian)
18- Onasanya R.O., Aiyelari O.P., Onasanya A., Oikeh S., Nwilene F.E., and Oyelakin O.O. 2009. Growth and yield response of maize (Zea mays L.) to different rates of nitrogen and phosphorus fertilizers in southern Nigeria. World Journal of Agricultural Sciences 5(4): 400-407.
19- Pandey R.K., Maranwille J.W., and Admou A. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I.Grain yield and yield components. Journal of Agricultural Water Management. 46(1): 1-13
20- Payero J.O., Melvin S.R., Irmak S., and Tarkalson D. 2006. Yield response of corn to deficit irrigation in a semiarid climate. Journal of Agricultural Water Management 84: 101–112.
21- Rosami M., Koocheki A.R., Nassiri Mahallai M., and Kaf M. 2008. Evaluation of chlorophyll meter (SPAD) data for prediction of nitrogen satus in corn (Zea mays L.), American- Eurasian Journal of Agriculture and Environmental Sciences 3(1): 79-85.
22- Sakthivadivel R., de Fraiture C., Molden DJ., Perry C., and Kloezen W. 1999 Indicators of land and water productivity in irrigated agriculture. International Journal Water Resources Development 15: 161-179.
23- Sander J.Z., and Bastiaanssen W.G.M. 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management 69(2): 115-133.
24- Sedghi M., Nemati A., Seyyed Sharifi R., and Gholam Hosseini M. 2016. The effect of different of nitrogen rates on yield and corn fertilizer use efficiency for different planting dates in Ardabil, Journal of crop production 9(3): 45-65. (In Persian)
25- Soler C.M.T., Hoogenboom G., Sentelhas P.C., and Duarte A.P. 2007. Impact of water stress on maize grown off-season in a subtropical environment. Journal of Agronomy and Crop Science 193: 247–261.
26- Zeidan M.S., Amany A., and El-Kramany M.F. 2006. Effect of N-fertilizer and plant density on yield and quality of maize in sandy soil. Research Journal of Agriculture and Biological Sciences 2(4): 156-161.