ارزیابی تناسب اراضی برای برنج بر مبنای مدل فائو و با استفاده از تکنیک‌های تلفیقی تصمیم‌گیری چندمعیاری فازی (مطالعه موردی: مؤسسه تحقیقات برنج آمل، استان مازندران)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه گیلان

2 سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

چکیده

مسأله امنیت غذایی یکی از سیاست‎های مهم کشاورزی است و لازم است در این راستا، اراضی قابل کشت مورد ارزیابی قرار گیرند. یکی از رویکردهای اساسی جهت بهره‌برداری از منابع اراضی با کسب حداکثر بازده و حفظ کیفیت اراضی برای آینده، ارزیابی تناسب اراضی است. با توجه به اهمیت برنج به عنوان دومین محصول پرمصرف کشور و اهمیت مطالعات ارزیابی تناسب اراضی در استفاده بهینه و پایدار از اراضی، این پژوهش با هدف استفاده از تکنیک‌های تلفیقی تصمیم‌گیری چندمعیاری فازی و تعیین عمق بهینه خاک برای مطالعات ارزیابی تناسب اراضی برای کشت برنج در مزرعه پژوهشی گل­دشت مؤسسه تحقیقات برنج کشور انجام گرفت. بدین منظور نمونه­برداری خاک در 50 نقطه و از چهار عمق مختلف انجام شد و برداشت محصول در پلاتی به وسعت یک مترمربع به مرکزیت محل‌های نمونه‌برداری خاک انجام گرفت. سپس شاخص اراضی با استفاده از روش‌های پارامتریک (ریشه دوم)، Fuzzy-AHP و Fuzzy-AHP-OWA در چهار حالت عمقی صفر تا 25، صفر تا 50، صفر تا 75 و صفر تا 100 سانتی‌متر مورد محاسبه و مقایسه قرار گرفتند. براساس همبستگی بین شاخص‌های اراضی محاسبه شده برای عمق‌های مختلف و عملکرد مشاهده شده برنج، بیشترین ضرایب همبستگی برای روش Fuzzy-AHP-OWA با کمیت سنج نصف (37/0= ) به‌دست آمد. نتایج حاصل از تناسب اراضی منطقه مورد مطالعه با استفاده از روش Fuzzy-AHP-OWA نشان داد که با افزایش سطح ریسک پذیری، مناطق با درجه تناسب بالاتر مساحت بیشتری از منطقه را به خود اختصاص می­دهند. با توجه به مشابهت نتایج بدست آمده برای عمق‌های صفر تا 50 و صفر تا 100 سانتی‌متر با نتایج خاک‌رخ شاهد در هر سه روش پارامتریک، Fuzzy-AHP و  Fuzzy-AHP-OWAپیشنهاد می‌شود که استفاده از عمق صفر تا 50 سانتی‌متر به منظور مطالعات ارزیابی تناسب اراضی برای برنج در منطقه‌ی گل‌دشت آمل مدنظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Land Suitability Evaluation Based on the FAO Model and Fuzzy Multi-Criteria Decision Making Techniques for Rice (Case Study: Rice Institute Amol, Mazandaran Province)

نویسندگان [English]

  • S. F. Nabavi 1
  • N. Yaghmaeian Mahabadi 1
  • S. M. Soltani 2
1 University of Guilan
2 Education and Extension Organization (AREEO), Rasht
چکیده [English]

Introduction: highly increases in population growth rate, in particular in developing countries, cause high pressure on agricultural resources. In north of Iran, the pressures are compounded by restricted rice paddy fields. Reliable and relevant land suitability evaluations are vital requirements for land use policy and decision making to support sustainable rural development. Therefore, it is necessary to employ and compare the classic model (FAO), new release technique (multi-criteria decision making strategy) and the capabilities of fuzzy systems to assess land suitability. In recent years, multi-criteria evaluations including Boolean overlay operators and weighted linear combination methods have been increasingly used. Also, using the Ordered Weighted Average (OWA) method can improve the above-mentioned techniques. The OWA method is able to calculate the degree of risk taking and risk aversion of individuals and apply them to the selection of the final option. Therefore, the purposes of the current study were to explore the most reliable method of land suitability evaluation for rice by using integrated fuzzy decision making and determine the optimum depth of soil for quantitative land suitability evaluation for rice production in Amol, Mazandaran province.
Materials and Methods: Two-hundred soil samples from 50 observation points at four depths of 0 to 25, 25 to 50, 50 to 75 and 75 to 100 cm with a constant interval were selected. After crop harvesting and taking soil samples from four depths in 50 observation points, and from the genetic horizons of representative pedon excavated in the region, the parameters needed for land suitability evaluation of rice were measured. Then, land suitability classes were calculated using the parametric (square root), Fuzzy-AHP and Fuzzy-AHP-OWA methods and were compared in four depths from 0 to 25, 0 to 50, 0 to 75 and 0 to 100 cm. In Fuzzy-AHP method, Kandel membership functions were used to determine the membership degree and analytic hierarchy process (AHP) was used to determine the weight of each of the effective land properties in crop yield. In Fuzzy-AHP-OWA method, criteria weights were obtained from AHP method and ordered weights using linguistic fuzzy quantifiers.
Results and Discussion: The results showed significant difference between the potential yield (5.5 t/ha) and the average of actual yield (3.9 t/ha) in the study area. With respect to the same and acceptable agricultural management of all plots, this difference might be due to soil limitations and subsequently a decrease in the numerical value of the soil index. Except for 0 to 25 cm soil depth, actual yield for the other soil depths showed a positive significant correlation with all calculated land indices by parametric, Fuzzy AHP and Fuzzy-AHP-OWA methods. The compatibility percentage between the representative pedon and observation points was remarkable for 0-50 and 0-100 cm depths in three studied methods. Considering time and cost consuming for land evaluation, this finding shows that 0 to 50 cm soil depth information might be a relevant alternative for the optimal depth to evaluate land suitability for rice in studied paddy fields. The results of the Fuzzy-AHP method showed that soil texture and organic carbon content were the most important soil properties for rice production. The results of land evaluation using Fuzzy-AHP-OWA method showed that with increasing the levels of risk (decreasing the value of α from 1000 to 0.0001), areas with a higher suitability degree occupy greater area. This can be explained by the fact that the strategy associated with the fuzzy quantifier all (α=1000) represents the worst-case scenario (the lowest criterion value is assigned to each location) and under the strategy associated with the fuzzy quantifier, at least one (α=0.0001), the land suitability pattern is composed of the best possible outcomes. The highest correlation coefficients (R2= 0.37) were obtained for Fuzzy-AHP-OWA (α=1) based on correlation between actual yields and calculated land indices for different depths of each parametric method, Fuzzy-AHP and Fuzzy-AHP-OWA. This is due to the high trade-off among the evaluation criteria in the half fuzzy quantifier (α=1).
Conclusion: The proposed approach based on Fuzzy-AHP-OWA has great potential to model land use suitability evaluation problem. Half fuzzy quantifier is introduced as the best scenario using Fuzzy-AHP-OWA method for rice land suitability evaluation. This is due to the high trade-off among the evaluation criteria in this quantifier. Given the fact that the land suitability studies are often costly and time consuming, the land suitability evaluation by using 0-50 cm results might be a relevant alternative for the optimal soil depth required for land suitability evaluation in paddy fields.

کلیدواژه‌ها [English]

  • Analytical Hierarchy Process (AHP)
  • ؛ Fuzzy conceptual quantifier؛ Fuzzy logic؛ Ordered weighted average (OWA)
1- Ayoade M. 2017. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS. Theoretical and Applied Climatology 129(3-4): 1341-1354.
2- Ayoubi S., Mohammad Zamani S., and Khormali F. 2009. Predicting wheat yield using Soil properties using principal component analysis. Iranian Journal of Soil and Water Research 49(1): 51-57. (In Persian)
3- Banai M.H. 1998. A map of the soil and moisture regime of Iranian soils. Soil and Water Research Institute, Tehran.
4- Beedasy J., and Whyatt D. 1999. Diverting the tourists: spatial decision support system for tourism planning on a developing Island. International Journal of Applied Earth Observation and Geoinformation 1(3-4): 163-174.‏
5- Brus D.J., and De Gruijter J.J. 2012. A hybrid design-based and model-based sampling approach to estimate the temporal trend of spatial means. Geoderma 173-174: 241-248.
6- Boroushaki S., and Malczewski J. 2008. Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in Arc GIS. Computers & Geosciences 34(4): 399–410.
7- Bouma J. and Finke P.A. 1993. Origin and nature of soil resource variability. In: Robert P.C., Rust R.H. and Larson W.E. (Eds.), Soil Specific Crop Management. ASA, CSSA, SSSA, Madison, WI, pp. 3-14.
8- Carlsson C., Fuller R. and Fuller S.1997. OWA operators for doctoral student selection problem. In R. R. Yager & J. Kacprzyk (Eds.), The Ordered Weighted Averaging Operator: Theory, Methodology and Applications. London: Kluwer Academic Publisher. pp. 67-178.
9- Chou T. Hsu C.L and Chen C.M. 2008. A fuzzy multi-criteria decision model for international tourist hotels location selection, International Journal of Hospitality Management 27(2): 293-301.
10- Cheng Y.Q., Yang L.Z., Cao Z.H., and Yin S. 2009. Chrono sequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151(1-2): 31-41.
11- Dengiz O., Ozyazici M.A., and Saglam M. 2013. Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment 13(1):1-10.
12- FAO. 2007. Land evaluation: towards a revised framework. Rome: Food and Agricultural Organization of the United Nations.
13- Getachew T.A. and Besufekad S.A. 2015. Land suitability analysis for rice production: A GIS based multi-criteria decision approach. American Journal of Geographic Information System 4(3): 95–104.
14- Givi J.1997. Qualitative evaluation of land suitability for crops and orchards, Scientific adviser of Soil and Water Research Institute and Faculty member, Faculty of Agriculture, Shahre Kord University. Journal No. 1015. (In Persian)
15- Khiddir S.M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation, Ph. D. thesis state university, Ghent. Belgium, 141 P.
16- Kogel-Knabner I., Amelung W., Cao Z., Fiedler S., Frenzel P., Jahn R., Kalbitz K., Kolbl A., and Schloter M. 2010. Biogeochemistry of paddy soils. Geoderma 157(1-2):1-14
17- Liu X., Xu J., and Zhang M. 2007. Spatial variability of soil available Zn and Cu in paddy rice fields of China. Environmental Geology 55(7): 1569–1576.
18- Mahdavi Firoozabadi M., Esfandiarpour Brojeni I., Bagheri Bodaghabadi M. and Kamali, A. 2016. Comparison of two fuzzy methods to determine soil depth in land suitability studies for wheat, Journal of Soil Management and Sustainable Production 6(3): 101-116. (In Persian with English abstract)
19- Makropoulos C.K., and Butler D. 2006. Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision making. Environmental Modelling and Software 21(1): 69–84.
20- Malekuti M.J, and Kawosi M. 2006. Balanced nutrition of rice. First Edition. Senate Publications, Tehran. (In persian)
21- Malczewski J. 2004. GIS based land-use suitability analysis: a critical overview. Progress in Planning 62(1): 3–65.
22- Malczewski J. 2006. Ordered weighted averaging with fuzzy quantifiers, GIS-based multicriteria evaluation for land use suitability analysis. International Journal of Applied Earth Observation and Geoinformation 8(4): 270–277.
23- Meng Y., Malczewski J., and Boroushaki S. 2011. A GIS-based multicriteria decision analysis approach for mapping accessibility patterns of housing development sites: a case study in Canmore, Alberta, Journal of Geographic Information System 3(1): 50-61.
24- Rajabi M., Mansourian A., and Talei M. 2011. Comparing study between AHP, AHP-OWA and fuzzy AHP-OWA multi-Criteria decision making methods for site selection of residential complexes in Tabriz-Iran. Journal of Environmental Studies 37(57): 1-16. (In Persian with English abstract)
25- Ruan D. 1990. A critical study of widely used fuzzy implication operators and their influence on the inference rules in fuzzy expert systems. Ph.D. dissertation, State University of Gent, Belgium.
26- Saaty T.L. 1980. The analytic hierarchy process. McGraw–Hill, New York.
27- Salehi M.H., and Khademi H. 2008. Basics of Soil Surveying. Academic Jihad. Esfahan. (In Persian)
28- Shariff A.M.,Wan M.D. 2008. Land suitability study using GIS and MCDA in agriculture activities: a land suitability study for harumanis mango in perlis using GIS and MCDA. GIS Bulletin 2: 33–43.
29- Shukla M.K., Lal R., and Ebinger M. 2004. Principal component analysis for predicting corn biomass and grain yields. Soil Science 169(3): 215224.
30- Soil Survey Staff. 1996. Soil Survey Laboratory Methods Manual. Report No. 42, USDA, NRCS, NCSS, USA.
31- Sys C., Van Ranst E., and Debaveye J. 1991. Land Evaluation. Part II: methods in land evaluation. Agricultural Publication No. 7. General Administration for Development Cooperation, Brussels, Belgium.
32- Sys C., Van Ranst E., Debaveye J., and Beernaert F. 1993. Land Evaluation. Part III: methods in land evaluation. Publication No. 7. General Administration for Development Cooperation, Brussels, Belgium.
33- Taleai M., Soleimani H., and Farajzadeh M. 2013. Evaluation of land suitability for dryland wheat cultivation based on FAO model using fuzzy-AHP-OWA technique. Journal of Water and Soil 28(1): 156-139. (In Persian with English abstract)
34- Tang H., Van Ranst E., and Sys C. 1992. An approach to predict land production potential for irrigated and rainfed winter wheat in Pinan County, China. Soil Technology 5(3): 213-224.
35- Van Ranst E., Tang H., Groenemans R., and Sinthurahat S. 1996. Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma 70(1): 1-19.
36- WebsterR., and Oliver M.A. 2007. Geostatistics for Environmental Scientists. John Wiley and Sons, Chichester.
37- Wilding L. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys, Soil spatial variability. Workshop, pp. 166-194.
38- Yager R.R. 1988. On ordered weighted averaging aggregation operators in Multi criteria decision making IEEE Transactions on systems, Man, and Cybernetics 18(1): 183-190.
39- Yager R.R. 1996. Quantifier guided aggregation using OWA operators, International Journal of Intelligent Systems 11(1): 49–73.
40- Yang K., Koike T., and Ye B. 2006. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets, Agricultural and Forest Meteorology 137(1-2): 43–55.