تغییر اقلیم در ایران از دیدگاه تغییرات آب قابل بارش، نم ویژه و باد برداری

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استاد مهندسی آب، مرکز پژوهش‌های علوم جوی- اقیانوسی، دانشگاه شیراز

2 دانش آموخته کارشناسی ارشد بخش مهندسی آب، مرکز پژوهش-های علوم جوی- اقیانوسی، دانشگاه شیراز

3 کارشناس ارشد بخش مهندسی آب، مرکز پژوهش‌های علوم جوی- اقیانوسی، دانشگاه شیراز

چکیده

تغییرات زمستانه اقلیمی ایران و بخش‌هایی از کشورهای همسایه با بررسی تغییرات مکانی- زمانی پراسنج­های آب قابل بارش و نم­ویژه و باد برداری ارزیابی شد. در این راستا، اندازه ماهانه ژانویه تا مارس این پراسنج­ها برای دوره 2017-1960 در پیکسل­هایo5/2 * o5/2 از داده­های نسخه دوم بازتحلیل سازمان ملی جوی و اقیانوسی آمریکا فراهم گردید. چند ویژگی آماری (مانند میانگین فصلی) این داده­ها نخست برای در دو بازه زمانی 29 ساله (1960 تا 1988 و 1989 تا 2017) و سپس برای پنج دوره ده ساله پیاپی و یک دوره هشت ساله (2017-2010) با هم مقایسه شد. کمترین اندازه آب قابل بارش و بیشترین اندازه نم ویژه در پهنه کوهستانی شمال­باختری، باختر و مرکز کشور دیده شد. در سنجش با بازه1960 تا 1988، بازه زمانی 1989 تا 2017 با کاهش معنی­داری در اندازه آب قابل بارش، نم ویژه، بادهای باختر­وزان و جنوب­وزان به ویژه در گستره جنوب باختری ایران روبرو بود. در بازه زمانی 1960 تا 1969، بیشترین اندازه­های مثبت بی‌هنجاری در اندازه این پراسنج­ها برای بخش‌های بزرگی از ایران بویژه گستره­های باختری و جنوب باختری دیده شد. کمترین اندازه این پراسنج‏ها نیز وابسته به دوره 2009-2000 بود. به جز دوره 1999-1990، اندازه­های آب قابل بارش و نم ویژه به گونه‎ای پیوسته برای دهه­های پس از 1970 کاهش یافته است. افزایش (کاهش) سرعت بادهای باختر­وزان و جنوب­وزان، با بیشتر (کم) شدن آب قابل بارش و نم ویژه در بخش‌های بزرگی از ایران همراه بوده است. در سنجش با دهه 1960، در دیگر دهه­ها و بویژه دو دهه 2000 و 2017 از سرعت این بادها کاسته شده و در برابر بادهای خشک خاور­وزان و شمال­وزان چیره می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Climate Change in Iran Based on Changes in Precipitable Water, Specific Humidity and Wind Data

نویسندگان [English]

  • S.M.J. Nazemosadat 1
  • L. Abbasi 2
  • S. Mehravar 3
1 Professor, Center for Atmospheric and Oceanic Research, Shiraz University
2 Graduate of Water Engineering, Center for Atmospheric and Oceanic Research, Shiraz University
3 Master of Water Engineering, Center for Atmospheric and Oceanic Research, Shiraz University
چکیده [English]

Introduction:Based on the research and assessment carried out during the Climate Change Enabling Activity Project under United Nations Framework Convention on Climate Change (UNFCCC) and using the scenarios proposed by IPCC, it is estimated that if the CO2 concentration doubles by the year 2100, the average temperature in Iran will increase by 1.5-4.5°C which will cause significant changes in water resources, energy demand, agricultural products and coastal zones. The present study is aimed to investigate the characteristics of climate change in Iran and some parts of the neighboring countries. Identifying the spatio-temporal changes in three atmospheric variables comprising perceptible water (PW), specific humidity (SH) and vector wind (VW, U and V components) over 1960-2017 was the main themes of the study.
Materials and Methods: Monthly values of these variables during wintertime (January to March) were extracted from the CDC/ Reanalysis 2/ NOAA in 2.5 * 2.5 grids for the period of 1960-2017. The study area locates between 20o to 45o N and 30o to 70o E. After averaging monthly data into seasonal series, as first step, significant changes in the considered series were investigated between two equal periods having 29 years of data (1960-1988 and 1989-2017). In the second step, the 58 years of the study period were divided into five successive decades (1960-2009) and a period with eight years (2010-2017). The Kolmogorov-Smirnov (K-S) field significant test was used for assessing the spatio-temporal difference between the obtained maps associated with various decades.
Results and Discussion: According to Figures 1 and 2, for both of the 29-year time-scales (1960-1988 and 1989-2017), PW was maximum (12 to 17 kg/m2) alongside the northern coasts of the Persian Gulf and the Oman Sea. After this, PW had the highest values over the southern coasts of the Caspian Sea (10 to 12 kg/m2). Oppose to these coastal areas, minimum values of this variable with about 6 to 10 kg/m2 were associated with the Zagros mountains. In general, PW exhibited an inverse relationship with elevation. In contrast to PW, SH  maximized (4.2 to 5 g/kg) over the Zagros ranges and its relationship with elevation was generally positive. The lowest value of the SH data was about 3.5 g/kg suggesting relatively low variation in the SH data within the country. Compared to the 1960-1988 period, a significant decline was observed in the values of PW and SH in 1989-2017. Although this decline was obvious over all parts of the country, it was slightly significant for the southwestern (northwestern) districts. Compared to the first half of the study period (1960-1989), PW (or SH) decreased by about 2.5 kg/m2 (or 0.6 g/kg) in southwestern and 0.3 kg/m2 (or 0.15 g/kg) in northwestern parts of Iran for the recent half (1989-2017). Differences between wind data during these two time-periods were mostly either northerly or easterly suggesting a significant decrease in the rain-bearing southerly or westerly circulation over 1989-2017. Anomalies of the near-surface wintertime winds were mostly found to be southerly or westerly during 1960-1988 implicating the possibility of moisture transport from the Persian Gulf, the Oman Sea, the Mediterranean Sea, and the Red Sea into the most parts of Iran. Conversely, the anomalies were either northerly or easterly in1989-2017 suggesting less moisture transport into Iran for this recent period. 
In the decadal time-scale, maximum values of PW, SH, as well as southerly or westerly circulations, were observed during 1960-1969. The given results suggest that the enhanced (or suppressed) values of PW and SH are generally harmonized with the strengthened southerly and westerly (or northerly and easterly) wind anomalies. For this period, prevailing of southeasterly winds over the Caspian Sea enhanced or suppressed the measure of PW, SH over the western or eastern coasts of the Sea, respectively. Even though the mentioned atmospheric circulation patterns were generally similar for the 1960-1969 and 1970-1979 decades, positive anomalies of PW and SH, as well as the westerly and southerly airflows, were slightly suppressed for the second decade. The anomalies of westerly and southerly winds decreased by about one-fifth for 1980-1989 as compared with that in 1960-1969 resulting in a significant decrease in the PW and SH data for this decade. Although these anomalies were slightly positive over most parts of Iran, their weakness did not allow significant improvement in the PW and SH values. The period of 2000-2009 was evaluated as the driest decade of the study period for which the negative anomalies of PW and SH, as well as westerly and southerly circulations, were maximized (in absolute values). In spite of the fact that these undesirable conditions have recovered during the period of 2010-2017, PW and SH were still very low for this recent period. With the exception of the 1990-1999 decade, PW and SH have continuously decreased for the decades after 1970. The rain-bearing southerly and westerly winds have been gradually replaced with dry northerly or easterly wind during the recent periods.
Conclusion: The findings showed that the PW and SH distribution patterns are close together in the 29-year periods, the measures were, however, significantly smaller in the second period than in the first. The wind anomalies, which were mostly southerly and westerly in 1960-1988, have been changed to northerly and easterly in 1989-2017. Since the southerly and westerly winds play an influential role in moisture transfer to Iran, their reduction in the second period is consistent with the observed decrease in PW and SH. Among the ten-year periods, the highest positive PW and SH abnormalities are associated with the 1960 and 1969 decade. This positive anomaly decreased over the time. Since a positive trend is observed for 2010-2017, it can be concluded that 2000-2010 is the driest decade of the study period. The positive anomalies of westerlies (easterlies) and southerlies (northerlies) increased (decreased) the magnitudes of PW and SH.
 

کلیدواژه‌ها [English]

  • Climate change
  • Iran
  • Precipitable water
  • specific humidity
1- شریعت مداری، ز. (2012). هواشناسی عمومی. انتشارات پارسیا، چاپ اول، 2012.
2- عساکره، ح. و دوستکامیان، م. (2015). بررسی نقش عوامل مکانی بر توزیع – پراکندگی بیشینه های آب قابل بارش جو ایران. نشریه تحقیقات کاربردی علوم جغرافیایی، سال پانزدهم، شماره 36، ص 7-26.
3- فلاح قالهری، غ. ع. (2011). اصول و مبانی هواشناسی. انتشارات پژوهشکده اقلیم شناسی، چاپ اول، 2011.
4- مباشری، م. ر، پورباقر کردی، س. م، فرج زاده اصل، م و صادقی نائینی، ع. (2010).برآورد آب قابل بارش کلی با استفاده از تصاویر ماهواره ای و داده های رادیوساوند: ناحیه تهران. فصلنامه مدرس علوم انسانی، شماره 1، ص 107 تا 126.
5- ناظم السادات، س. م. ج. (2016). مبانی هوا و اقلیم شناسی. مرکز نشر دانشگاهی، چاپ دوم، 2016.
6- Adeyemi, B., 2009. Empirical modeling of layered integrated water vapor using surface mixing ratio in Nigeria. Journal of Applied Meteorology and Climatology, 48(2), pp.369-380.
7- American Meteorological Society, Precipitable Water Vapor, Glossary of Meteorology. Available athttp://glossary.ametsoc.org/wiki/Precipitable_water, 2015.
8- Choy, S., Wang, C.S., Yeh, T.K., Dawson, J., Jia, M. and Kuleshov, Y., 2015. Precipitable water vapor estimates in the Australian region from ground-based GPS observations. Advances in Meteorology, 2015.
9- Dessler, A.E., Zhang, Z. and Yang, P., 2008. Water‐vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophysical Research Letters, 35(20).
10- Dai, A. and Trenberth, K.E., 2004. The diurnal cycle and its depiction in the Community Climate System Model. Journal of Climate, 17(5), pp.930-951.
11- IPCC,ClimateChange2013:ThePhysicalScienceBasis.Contri-bution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, 2013.
12- Kiehl, J.T. and Trenberth, K.E., 1997. Earth's annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), pp.197-208.
13- Mieruch, S., Noël, S., Bovensmann, H. and Burrows, J.P., 2008. Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmospheric Chemistry and Physics, 8(3), pp.491-504.
14- Ross, R.J. and Elliott, W.P., 1996. Tropospheric water vapor climatology and trends over North America: 1973–93. Journal of Climate, 9(12), pp.3561-3574.